

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Scalable Online Simulation for
Modeling Grid Dynamics

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in
Computer Science

by

XIN LIU

Committee in charge:

 Professor Andrew A. Chien, Chair
 Professor Rene L. Cruz
 Professor Ramesh R. Rao
 Professor Stefan Savage
 Professor Amin M. Vahdat
 Professor George Varghese

2004

iii

The dissertation of Xin Liu is approved, and it

is acceptable in quality and form for publication on

microfilm:

Chair

University of California, San Diego

2004

iv

Table of Contents

Signature Page ...iii

Table of Contents... iv

List of Figures.. ix

Acknowledgements..xiii

VITA .. xv

ABSTRACT OF THE DISSERTATION ..xvi

Chapter 1 Introduction ... 1

1.1 Emergence of Grid Computing.. 1

1.2 The Problem .. 3

1.3 Insufficiency of Previous Approaches.. 4

1.4 Approach: Online Simulation.. 6

1.5 Contributions ... 8

1.6 Dissertation Roadmap ... 9

Chapter 2 Background ... 11

2.1 Application Performance Modeling .. 11

2.1.1 Grid Modeling Toolkits .. 11

2.1.2 Network Simulation.. 13

2.1.3 Network Emulation... 14

2.1.4 Real Testbeds.. 15

2.2 Parallel and Distributed Discrete-Event Simulation.. 16

v

2.2.1 Discrete-Event Simulation .. 16

2.2.2 Parallel and Distributed Simulation .. 18

2.3 Graph Partitioning ... 23

2.3.1 Single-Objective Single-Constraint Graph Partitioning Problem................. 23

2.3.2 Multi-Constraint Graph Partitioning Problem .. 24

2.3.3 Multi-Object Graph Partitioning Problem .. 24

Chapter 3 Dissertation Statement .. 26

3.1 Context .. 26

3.1.1 Target Applications, Networks, and Resources .. 26

3.1.2 Execution Platform ... 27

3.2 Problem.. 29

3.2.1 How to Provide a Virtual Gird Environment .. 29

3.2.2 How to Simulate Efficiently and Accurately .. 29

3.2.3 How to Simulate with High Scalability .. 30

3.3 Dissertation Statement... 32

3.4 Success Criteria ... 33

Chapter 4 Approach ... 35

4.1 Overview ... 35

4.2 Resource Virtualization using Live Application Interception 37

4.2.1 Virtualizing Resources.. 37

4.2.2 Virtualizing Information Services... 39

4.3 Computation Resource Simulation using Soft Real-time Scheduling 41

4.4 Network Modeling using Scalable Online Simulation .. 43

4.4.1 Packet Level Detailed Simulation... 43

4.4.2 Online Network Simulation .. 44

vi

4.4.3 Distributed Conservative Discrete Event Network Simulation 46

4.5 Scaled Real-time Execution... 49

4.6 Summary.. 51

Chapter 5 System Design... 52

5.1 The MicroGrid Overview .. 52

5.1.1 The MicroGrid System View.. 53

5.1.2 The MicroGrid User View.. 54

5.2 CPU Controller .. 55

5.2.1 The Challenge ... 56

5.2.2 CPU Controller with Sliding Window.. 57

5.2.3 Discussion... 59

5.3 Scaled Real-time Online Network Simulation .. 61

5.3.1 Network Modeling.. 62

5.3.2 Online Network Simulation .. 69

5.4 Traffic Based Load Balance for Scalable Simulation.. 74

5.4.1 Elements of Network Mapping Problem .. 74

5.4.2 Modeling Network Mapping as a Graph Partitioning Problem 76

5.4.3 Traffic Based Network Mapping .. 80

5.4.4 Hierarchical Load Balance Approach... 84

5.5 Summary.. 87

Chapter 6 Validation.. 88

6.1 Methodology and Experimental Environment... 88

6.2 Validation of the Computation Resource Simulation .. 89

6.2.1 Computation Intensive Applications... 89

6.2.2 Applications with Mixed Computation and Communication 91

vii

6.3 Validation of Network Simulation .. 93

6.3.1 Validation of Local Area Network ... 94

6.3.2 Validation of Metro Area Network... 96

6.3.3 Validation of Wide Area Network.. 97

6.4 Validation of the MicroGrid on Applications.. 99

6.4.1 Applications .. 99

6.4.2 Experiment Environment .. 101

6.4.3 Simulation Results .. 102

6.5 Summary.. 103

Chapter 7 Scalability Studies ... 105

7.1 Experimental Setup ... 105

7.1.1 Improve Scalability through Load Balance .. 105

7.1.2 Evaluation Methodology... 106

7.1.3 Evaluation Metrics .. 108

7.2 Flat Network Simulation ... 109

7.2.1 Single-AS Network Topology .. 109

7.2.2 Flat Network Simulation Results .. 109

7.3 Multi-AS Network Simulation .. 112

7.3.1 Multi-AS Network Topology.. 113

7.3.2 Multi-AS Network Simulation Results ... 113

7.4 Summary.. 117

Chapter 8 Case Studies .. 118

8.1 A Study of BGP Simulation Configuration ... 118

8.1.1 Problem Definition and Approach .. 119

8.1.2 Construct the Realistic Internet BGP Simulation Configuration 121

viii

8.1.3 Simulation Results .. 126

8.1.4 Summary... 129

8.2 Empirical Study of Tolerating DOS Attacks with a Proxy Network................... 129

8.2.1 Background... 130

8.2.2 Problem Definition and Approach .. 132

8.2.3 Experimental Environment ... 135

8.2.4 Experiments and Results... 138

8.2.5 Conclusion .. 146

8.3 Summary.. 147

Chapter 9 Related Work .. 148

9.1 Network Emulation Projects.. 148

9.1.1 ModelNet .. 148

9.1.2 Netbed/Emulab ... 150

9.1.3 Maya ... 152

9.1.4 Panda in Albatross .. 153

9.2 Novelties of the MicroGrid Approach and Capability .. 154

9.3 Summary.. 156

Chapter 10 Summary and Future Work... 157

10.1 Summary.. 157

10.2 Impact .. 159

10.3 Limitations... 160

10.4 Future Work... 162

Appendix A Automatic BGP Configuration... 164

ix

List of Figures

Figure 1.1 Integrated Online Simulation .. 6

Figure 2.1 Main Loop in an Event-driven Execution... 18

Figure 2.2 Parallel Executions of Multiple Logic Processes.. 19

Figure 2.3 Causality Errors... 20

Figure 2.4 The Null Message Algorithm.. 21

Figure 2.5 Synchronous using Barrier Synchronization Protocols 22

Figure 2.6 Global Barrier using a Tree Structure ... 22

Figure 4.1 The Approach in the MicroGrid.. 35

Figure 4.2 Virtualization based on VMM .. 37

Figure 4.3 Virtualization based on Virtual Host ID ... 38

Figure 4.4 Virtual Host MDS Records ... 40

Figure 4.5 Virtual Network MDS Records... 41

Figure 4.6 Computation Resource Simulation using Soft Real-time Scheduling 42

Figure 4.7 Online Network Simulation vs. Network Simulation 44

Figure 4.8 Simulation Rate... 50

Figure 4.9 Pseudo Code of the Scaled Real-time Simulation Control 50

Figure 5.1 the MicroGrid System View ... 53

Figure 5.2 The MicroGrid User View .. 54

Figure 5.3 CPU Controller ... 55

x

Figure 5.4 Slide Window CPU Controller ... 58

Figure 5.5 Possible Inaccuracy from Large Sliding Window Size 60

Figure 5.6 The MaSSF Scalable Network Simulation System....................................... 61

Figure 5.7 Protocol Stack for a Host with httpServer and Agent 63

Figure 5.8 Protocol Stack for a Router Running BGP and OSPF 64

Figure 5.9 A Host with Agent and httpServer .. 65

Figure 5.10 A Router with OSPF and BGP Routing Protocols...................................... 66

Figure 5.11 A Simplified DML for a Network with 2 Hosts and 1 Router.................... 66

Figure 5.12 Traffic Flow in a Real Operating System ... 70

Figure 5.13 Traffic Flow in MaSSF ... 71

Figure 5.14 Request Throughput for a Single Simulation Engine 73

Figure 5.15 Request Latency of a Single Simulation Engine Node 74

Figure 5.16 Mapping Routers to Physical Resources... 75

Figure 5.17 Load Variation over the Lifetime of Simulation... 76

Figure 5.18 The Multi-Objective Graph Partitioning Algorithm 78

Figure 5.19 Process of Network Mapping.. 79

Figure 5.20 Synchronization Cost of the TeraGrid NCSA Cluster 84

Figure 5.21 Hierarchical Graph Partitioning Algorithm .. 86

Figure 6.1 The cpuhog for Single Virtual Resource... 90

Figure 6.2 The cpuhog for Multiple Virtual Resources ... 91

Figure 6.3 The mixhog with Different Communication Granularity.............................. 92

Figure 6.4 The mixhog with 20ms Network Delay .. 93

Figure 6.5 The mixhog with 30ms Network Delay .. 93

xi

Figure 6.6 Network Throughput on GigE LAN ... 95

Figure 6.7 Network Latency on GigE LAN ... 95

Figure 6.8 Network Throughput on MAN ... 96

Figure 6.9 Network Latency on MAN ... 96

Figure 6.10 Network Throughputs on WAN.. 98

Figure 6.11 Running Time of Applications.. 103

Figure 7.1 Simulation Time on the Single-AS Network .. 110

Figure 7.2 Achieved MLL on the Single-AS Network .. 110

Figure 7.3 Load Imbalance on the Single-AS Network ... 111

Figure 7.4 Parallel Efficiency on Single-AS Network ... 112

Figure 7.5 Simulation Time on the Multi-AS Network ... 114

Figure 7.6 Achieved MLL on the Multi-AS Network.. 115

Figure 7.7 Load Imbalance on the Multi-AS Network... 116

Figure 7.8 Parallel Efficiency on Multi-AS ... 116

Figure 8.1 Procedure for Internet AS-level Topology Generation............................... 123

Figure 8.2 Selective Announcement... 124

Figure 8.3 An Example of AS relationships... 125

Figure 8.4 The Export Filter using the AS list ... 125

Figure 8.5 Export Filter using Community Attribute... 126

Figure 8.6 CDF of BGP Routing Table Match Percentage .. 128

Figure 8.7 DoS-Tolerant Proxy Network ... 131

Figure 8.8 Generic Proxy Network Prototype.. 136

Figure 8.9 Direct Access vs. Proxy Network ... 139

xii

Figure 8.10 Proxy Network Performance Implication ... 140

Figure 8.11 DOS-Resilience of Proxy Network... 141

Figure 8.12 Redundancy to Spreading DoS Attack.. 143

Figure 8.13 Correlation among Proxies and Users... 143

Figure 8.14 Resilience to Concentrate DoS Attack.. 144

Figure 8.15 Resilience to Concentrate DoS Attacks with Proxy Switching 144

Figure 8.16 Resilience and Proxy Network Size.. 146

xiii

Acknowledgements

I would like to thank everyone who helped me during my many years of graduate school at

the University of California，San Diego. I cannot name them all here, and I cannot thank them

enough.

First and foremost, I want to thank my advisor professor Andrew A. Chien for his constant

support and motivation. He has offered invaluable advice and instruction to me on identifying

problems, conducting research, and fine polishing solutions. His diligence and commitment to

science have been and will be a great influence on me for many years to come. I am grateful for

having the opportunity to learn from him and to work with him. I also thank Professor Rene I.

Cruz, Professor Rajesh R. Rao, Professor Stefan Savage, Professor Amin M. Vahdat, and

Professor George Varghese for serving in my committee and helping me with my dissertation.

I have learned much from my fellow graduate students and colleagues in CSAG. I thank

those who work together with me on the MicroGrid project, Huaxia Xia, Ju Wang, Alex

Olugbile, Hyojong Song, and Kenjiro Taura. Many of the research findings in this dissertation

came from discussions and collaboration with many brilliant people, in addition to those I just

mentioned. Also, I want to express my thankfulness to all my wonderful lab mates Luis, Xinran,

Richard, Eric, and Justin for making the work space quite fun through lively and interesting

discussions.

Finally I want to thank my family for their unconditional support, understanding and

patience in all my endeavors. Without their support this dissertation simply would not have

xiv

been possible. Special thanks to my wife Liying. Her love has made me capable of weathering

all the ups and downs throughout the ordeal of my doctoral study.

xv

VITA

1998 B.S., Computer Science
Tsinghua University, Beijing, China

2001 M.S., Computer Engineer
Institute of Computing Technology, Beijing, China

2004 Ph.D., Computer Science and Engineering
University of California, San Diego

PUBLICATIONS

X. Liu and A. Chien, Realistic Large Scale Online Network Simulation, the ACM Conference
on High Performance Computing and Networking, SC2004, Pittsburgh , Pennsylvania,
November 2004.

J. Wang, X. Liu, and A. Chien, Empirical Study of Tolerating Denial-of-Service Attacks with a
Proxy Network, ICDCS’05, October 2004 (Submitted for publication).

X. Liu, H. Xia, and A. Chien, Validating and Scaling the MicroGrid: A Scientific Instrument for
Grid Dynamics, Journal of Grid Computing 2004 (Accepted).

X. Liu and A. Chien, Traffic-based Load Balance for Scalable Network Emulation, in
Proceedings of the ACM Conference on High Performance Computing and Networking,
SC2003, Phoenix, Arizona, November 2003

H.J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura and A. Chien, The MicroGrid:
a Scientific Tool for Modeling Computational Grids , in Proceedings of he ACM Conference
on High Performance Computing and Networking, SC2000.

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in Parallel and Distributed Computing
Professor Andrew Chien, University of California, San Diego

Studies in Computer Networks
Professor George Varghese, University of California, San Diego

xvi

ABSTRACT OF THE DISSERTATION

Scalable Online Simulation for Modeling Grid Dynamics

by
Xin Liu

Doctor of Philosophy in Computer Science
University of California, San Diego, 2004

Professor Andrew A. Chien, Chair

Large-scale grids and other federations of distributed resources that aggregate and share

resources over wide-area networks present major new challenges because they couple the

behavior of resources and networks. These infrastructures support a new breed of applications

which interact dynamically with their resource environment, making it critical to understand

dynamic application and resource behavior to design for performance, stability, and reliability.

Coupled use means that accurate study of dynamic applications, middleware, resource, and

network behavior depends on coordinated, accurate, and simultaneous simulation of all four of

these elements. Thus, the long-term challenge is to support scalable, high-fidelity, online

simulation of applications, middleware, resources, and networks to support enable scientific and

systematic study of grid applications and environments. That challenge is the focus of this

dissertation.

We define the problems in performing large-scale, high-fidelity, online simulation. We

consider a number of approaches, and then present our approach in detail. Our approach

includes a set of techniques which enable the use of real application and middleware software,

and modeling of essentially arbitrary network and resource properties. These techniques

include resource virtualization via application interception, computation resource simulation

xvii

based on soft real-time scheduling, and packet-level online network simulation. Our studies and

experiments show that these techniques can support simulation experiments with complex

software packages as well as resource and network structures.

 While most of the techniques in our approach are inherently scalable, one major challenge

is online network simulation – which we implement as a parallel distributed discrete-event

simulation, well-known to be challenging to scale. A range of techniques for scaling our online

network are studied. Exploiting advanced graph partitioners, we explore a range of edge and

node weighting schemes based on a variety of static network and dynamic application

information. While simple approaches do not achieve acceptable load balance, our studies

show that detailed network structure and behavior can be combined with the graph partitioners

to achieve both good load balance and parallel efficiency. For example, our improvements

increase efficiency and scalability by over 100 times, achieving a parallel efficiency of over

40% on 90-node clusters for a range of experiments.

Our online simulation techniques are embedded in a working simulation tool, the MicroGrid,

which enables accurate and comprehensive study of the dynamic interaction of applications,

middleware, resource, and networks. We present experimental results with applications which

validate the implementation of the MicroGrid, showing that it not only runs real grid

applications and middleware, but also accurately models underlying resource and network

behavior. Our scalability experiments show that our load balance algorithms are effective, and

the best of them, hierarchical profile-driven load balance, scales well, enabling simulation

networks of 20,000 routers with 90 cluster nodes. This is the largest detailed network simulation

ever performed, and corresponds in size to a large ISP’s network. Realistic packet level

network simulation with tens of thousands of routers enables accurate study of grid and network

dynamics at unprecedented scale, and we believe great opportunities for new insights.

1

Chapter 1 Introduction

1.1 Emergence of Grid Computing

Increasing network performance, computation power, maturing distributed software

structures, and the growth of the Internet are enabling the emergence of novel types of

computation, communication, and resource sharing. These technical changes mirror an

increasing trend, in the scientific and commercial worlds towards collaboration and sharing in

larger and larger communities. Based on the growth and abundance of network connected

systems and bandwidth, these pools of shared resources, grids, allow geographically distributed

organizations to share applications, data and computing resources. Within a grid, networked

resources -- desktops, servers, storage, databases, even scientific instruments -- can be

combined to deploy massive computing power wherever and whenever it is needed most. Grids

can also enable dynamic and flexible sharing of data (and thereby information) across diverse

organizations, with controlled access. Users can find resources quickly, use them seamlessly,

and allow resource providers to manage them efficiently. These emerging grid systems already

comprise thousands of hosts and terabytes of data, and continue to grow in scale.

The growth of both deployment and use of grid environments (EuroGrid [1], TeraGrid [2],

Grid2003 [3], and PlanetLab [4]) is rapid – driven by business pressures to reduce management

cost and increase resource efficiency, as well as to accelerate the process of designing and

deploying information technology solutions. A number of grid middleware projects have been

developed to enable access to grid resources, such as Globus [5], Legion [6], Condor [7],

NetSolve [8], and GrADS [9]. Moreover, ranging from a computational project which searches

2

for extraterrestrial intelligence (SETI@home [10]) and other desktop computing examples

(GIMPS [11], Entropia [12], Folding@Home [13], etc.) to more recent molecular modeling for

drug design, brain activity analysis, and high energy physics [3], academic researchers have

been using Grid technology to solve large complex problems that require collaboration of

multiple organization, including scientific disciplines ranging from high-energy physics to the

life sciences.

Today, an increasing number of commercial enterprises are deploying grid technologies

developed in the scientific research community to improve their utilization of computing

resources, as well as to provide new capabilities. Essentially, all major computer software and

service provider companies, including IBM [14], HP [15], Sun [16] and Oracle [17], have

adopted grid technologies, and have begun to address the wide range of technology and

business issues. Their products offer a range of software toolkits for creating and hosting grid

services, federating data, describing applications, and mean to provide grid solutions for

enterprise computing and e-commerce. In fact, grid computing has become a widely adopted

technology in a number of industries, including life sciences, financial services, energy, and

aerospace [18].

While grid technologies aggregate and share resources over wide-area networks to support

applications at unprecedented levels of scale and performance, they also raise the critical issue

of grid dynamics. First, grid applications couple network behavior with computation and storage

devices (end resources). As a result, understanding the behavior of even single applications or

resources requires integrated study of both networks and end resources. Second, because grids

are based on sharing resources, a natural competition for these resources does exist among users.

With uncontrolled application behavior, computation and network load in the system may vary

dramatically. In open grid systems, where users and applications can enter without admission

control, this competition may be extreme, producing unstable resources and effective denial-of-

3

service for applications. Even at modest load factors, large applications or even malicious users

may compete for shared resources, affecting the performance of each other greatly. In fact, each

application may act dynamically in an attempt to improve its performance, but the aggregation

of these actions may have dramatic adverse impact on overall grid behavior.

1.2 The Problem

Understanding grid dynamics and their effect on application performance and grid resources

is a critical problem. To support grid applications and large-scale grid environments running a

broad variety of critical commercial, scientific, and societal functions, we must be able to

engineer resource stability, application performance stability, application quality of service, and

also efficient resource utilization. As a community, our current capabilities for such design are

limited, both in the context of grids and in the larger context of distributed systems. It is no

exaggeration to say that our understanding of Internet, distributed application, end resource, and

grid dynamics is quite limited.

While research continues apace, current grid middleware systems and environments provide

only the basic mechanisms needed for execution in a grid. We have little understanding of how

to combine dynamic resource allocation, quality of service provisioning, and application

performance models to achieve a desired design goal of resource stability, application stability,

predictable behavior, guaranteed quality of service, etc., in an open, shared, efficiently utilized

grid environment. Current practice is to evaluate the middleware and applications in a handful

of small scale grid environments before being released for use in large production grids. Only

after some time, based on ad hoc testing and use, is their dynamic behavior under typical

circumstances understood. However, even at this point, we have limited understanding of their

dynamic properties in novel circumstances, such as different resource environments,

competitive resource demands, or failure modes. In fact, as evidenced by the 2003 electrical

4

power grid failure [19], understanding of such circumstances is a critical element of risk

assessment. Further, we lack the tools to perform such studies either analytically or

empirically.

Low-end pervasive or ubiquitous computing systems (i.e. Jini, Windows CE, Cell phone,

etc.) systems have similar needs. These applications often depend on open shared resource

environments, which strive to ensure application quality of service, and are subject to large

fluctuations in load (which may arise from crowds of devices!). While the structure of solutions

for pervasive computing and grid systems may ultimately differ, the simulation and modeling

needs for coupled network and resource modeling are remarkably similar.

In brief, understanding the dynamic behavior of grid environments (applications,

middleware, resources, and networks) remains an open research challenge, and the subsequent

engineering need to ensure resource stability, application performance stability, application

quality of service, and also efficient resource utilization remains daunting. This problem

motivates us to build empirical tools for characterization described in this dissertation.

1.3 Insufficiency of Previous Approaches

Traditionally, distributed applications and networks have been studied separately – each

community employing relative simple models for the other domain. For example, distributed

systems researchers often use simple latency, bandwidth, and reliability models for networks,

while networking researchers use application models based on basic web-browsing or other

simple models of application workloads. These methodologies have produced significant

advances, but we are increasingly faced with the reality that a broad range of distributed

applications are now strongly network dependent, and that their performance depends directly

on detailed dynamic network properties, such as packet loss, protocol behavior, latency,

bandwidth, etc. While significant advances have been made in aggregate modeling of network

5

behavior [20, 21], at present, only detailed packet-level studies, or close analogs, can accurately

model protocol dynamics, particularly in more extreme cases [22, 23]. At the same time,

increasingly complex and dynamic applications can have a dramatic impact on networks

performance; some examples include, peer-to-peer file sharing, viruses such as MyDoom, and

multi-gigabit stream transfers for scientific applications. In particular, peer-to-peer file sharing

and multi-gigabit scientific applications are exemplary of a future generation of applications

which are highly network performance aware, and subsequently, adapt their behavior--and

thereby network use--rapidly and drastically, in response to the experienced network

performance. These concurrent changes motivate a strong need for integrated simulation and

modeling of distributed networks. Further, the increasing complexity and adaptive behavior of

applications and middleware motivate the use of integrated simulation tools, which enables

these complex software systems to be used directly – accurate modeling is difficult.

In summary, traditional approaches are insufficient for accurate modeling of grid

applications. Using simple network modeling is often inaccurate, and building application

performance model may be infeasible and may elide subtle, yet critical, performance details.

We believe that integrated simulation tools, which allow direct use of complex system and

detailed network modeling, are a most promising practical solution. Real testbeds have a range

of advantages, but any single real grid is inflexible and limited in scalability, when compared to

simulation tools. Furthermore, real testbeds are far more expensive than simulation-based

approaches. Thus, the rapidly evolving needs of application, middleware, grid, and network

designers as well as users and operators demand integrated simulation tools. Without tools that

integrate resource, network, and software system modeling, accurate study of grid application

and system dynamics is impossible.

6

1.4 Approach: Online Simulation

Online Network
Simulator Resource

simulator

Resource
simulator

Resource
simulator

Resource
simulator

Virtual Grid

Figure 1.1 Integrated Online Simulation

Our approach is to develop and design an integrated online simulation system (see Figure

1.1), which supports direct execution of real applications within a simulated grid environment.

This system will enable scientific and systematic study of dynamic applications, middleware,

resources, and network behavior. Furthermore, it should provide a vehicle for observable,

repeatable study and systematic exploration of design spaces for a wealth of application and

middleware design problems, exploration of rare or extreme situations, rational choices in

application deployment, grid resource allocation, and network design.

To achieve the goal of integrated online simulation, critical sub-problems include resource

virtualization, resource modeling, online network simulation, and global coordination, which

combines the resource modeling modules. There are many challenges and open questions in the

area. The critical questions are:

1) How do we support a virtual (simulated) grid environment? How do we provide

information services within the virtual grid?

2) How do we provide this illusion of a virtual grid efficiently?

7

3) How do we provide accurate resource modeling for computation, storage, and network?

How much fidelity is enough?

4) How do we provide a scalable online simulation of networks, given large networks with

bursts of traffic loads, highly distributed applications, and complex dynamic interactions

between applications, networks and resources?

5) How do we support multiple simulation modules in a single experiment?

As we will show in this dissertation, accurate and comprehensive study of the dynamic

interaction of applications, middleware, resource, and networks is possible with scaled real-time

online network simulator, and can as well be used to simulate and understand complex grid

behavior

For computational modeling, efficiency is a critical issue, as we need to construct virtual

grid environments with large numbers of resources in order to run large numbers of complex

grid applications. Accuracy is a second priority, but the level of accuracy must remain steady

enough to support direct execution of applications. In our approach, this is achieved through the

use of soft real-time process scheduling, combined with resource virtualization based on virtual

host identity.

The network model provides the communication and coordination which couples the

resource simulation modules. It is addressed by using detailed packet-level simulation and

realistic network routing protocols, which makes scalability the major remaining challenge for

network modeling. To address scalability, we use parallel discrete-event simulation enhanced

by sophisticated load balancing algorithms which exploits a range of static network and

dynamic application information, distributed network simulation. Our experiments demonstrate

that our approaches can achieve scalable parallel discrete event simulation, while supporting

high fidelity simulation of a large grid system.

8

An important concept in our approach is scaled real-time execution. To guarantee correct

interaction between different simulation components, the components should make progress at

the same pace. Scaled real-time execution achieves the desirable effect of global coordination

while providing more flexibility, when simulating larger or faster virtual resources with limited

physical resources.

1.5 Contributions

The primary contribution of our work is to introduce a scientific instrument for study of

Grid dynamics, the MicroGrid. This system enables a novel approach to the study of the

interaction between applications, middleware, resources, and networks via online simulation at

full scale. Individual contributions are summarized below:

1) A Simulation Framework which enables flexible and accurate virtual grid modeling.

We proposed a scaled real-time online simulation mechanism to study application

performance directly. Its capabilities include instrumentation needed to capture real application

detail, flexible network modeling and configuration. Coupled with our soft real-time process

scheduling mechanism, it can provide a high fidelity virtual grid modeling environment.

2) A Formulation that maps the critical load balancing problem of network simulation

to a graph partitioning problem, and solves it with graph partitioners, to improve the

scalability of network simulation.

Exploring a range of edge and node weighting schemes based on a variety of static network

and dynamic application information, we designed and evaluated three weighting mechanisms,

and demonstrated that, compared to topology-based techniques (TOP), adding application

placement information (PLACE) improves load-balance significantly, while adding profile

information (PROFILE) enables improvements of 50-66%.

9

3) Load-balancing mechanisms which improve the simulation efficiency and scalability

for large-scale network simulation.

While this mechanism can be integrated with the three former algorithms, the hierarchical

profile-based load balance approach (HPROF) demonstrates the best performance in simulating

large scale network. It is shown that HPROF can increase efficiency and scalability by over 100

times, achieving a parallel efficiency of over 40% on 90-node clusters, for a range of

experiments.

4) Large-scale detailed packet level network simulation, with realistic network

topology and network routing structures (100 AS with 200 routers in each AS, BGP4 and

OSPF routing).

In addition to detailed modeling of OSPF and BGP routing protocols, we developed a set of

heuristics for automatic realistic BGP routing configuration as an improvement to Internet-like

topology generation.

5) A System which achieves accurate grid dynamic study at unprecedented scale.

We implemented and validated the MicroGrid toolkit prototype. Simulation experiments of

different large-scale network topologies and applications on Linux clusters show that our

implementation is scalable. Using a 128 node cluster, we are able to accurately simulate a

network with 20,000 routers, which is comparable to a large ISP network.

1.6 Dissertation Roadmap

The rest of this dissertation is organized as follows. Chapter 2 provides a simple

introduction on current approaches for application performance modeling, and some

background on parallel and distributed discrete event simulation and graph partition algorithms.

Chapter 3 presents the specific context of our work, defines the problem we address, and

provides our dissertation statement and criteria for success. We introduce our approach to the

10

problem, scaled real-time online simulation, in Chapter 4. Chapter 5 presents the details of our

MicroGrid design and implementation, which includes the soft real-time process scheduling,

online network simulation, and the load balancing algorithms for larger scalability. The

MicroGrid system is validated in Chapter 6, and experiments on different network topologies

and applications are used to show the scalability of the MicroGrid systems in Chapter 7,

focusing on the effect of our load balancing algorithms. After that, the MicroGrid is used on two

real network related research experiments in Chapter 8. We discuss related work in Chapter 9

and conclude in Chapter 10 by summarizing and discussing future research directions.

11

Chapter 2 Background

In Section 2.1, we give a simple introduction of current approaches for application

performance modeling. After that, we present some background for understanding the reminder

of the dissertation. Section 2.2 introduces some basics of parallel and distributed discrete-event

simulation, which is a key base of our network simulator. Then Section 2.3 introduces the graph

partitioning algorithms used in our load balance studies of network simulation.

2.1 Application Performance Modeling

In this section we introduce four methods that have been used for network distributed

system and Grid experiments to evaluate dynamic behavior: network simulation, Grid modeling,

emulation, and real testbeds.

2.1.1 Grid Modeling Toolkits

A wide range of software tools [24] provide general-purpose discrete-event simulation or

even more focused Grid simulation libraries. The notable ones are Bricks[25], MONARC[26],

GridSim[27] [28], and SimGrid[29].

The Bricks simulation system [25], developed at the Tokyo Institute of Technology in Japan,

helps in simulating client-server global computing systems that provide remote access to

scientific libraries and packages running on high-performance computers. Bricks is designed

using an object-oriented discrete-event simulation framework and implemented in Java. Bricks

provides a Brick script language that enables the user to setup configuration and parameters of

12

the Global Computing Environment. The user resorts to building “bricks” within the script to

build and evaluate a variety of simulations.

The MONARC (Models of Networked Analysis at Regional Centers) [26] simulation

framework is a design and modeling tool for large-scale distributed systems applied to High

Energy Physics experiments. It is an object-oriented discrete event simulator, written in Java.

The tool employs a process-oriented approach for flexible simulation, and consists of threaded

objects or “Active Objects”. The framework provides a complete set of basic components

(processing nodes, data servers, network component) for easily building complex computing

model simulation.

The GridSim [27], developed at University of Melbourne in Australia, supports modeling

and simulation of heterogeneous Grid resources, users, applications, brokers and schedulers in a

Grid computing environments. It provides primitives for creation of application tasks, mapping

of tasks to resources and their management so that resource schedulers can be simulated to

study the scheduling algorithms involved. GridSim is based on the event-driven discrete event

simulation engine SimJava [28].

The SimGrid[29] toolkit, developed at UCSD, is a C language based toolkit for the

simulation of application scheduling. SimGrid aims at providing the right model and level of

abstraction for studying Grid-based scheduling algorithms. It supports modeling of resources

that are time-shared, and the load can be injected as constants, or from real traces. Using

SimGrid API, tasks can be assigned to resources, depending on the scheduling policy being

simulated.

The primary limitations with all of these grid modeling tools is that they do not allow easy

use of existing applications and grid middleware, and thus, the results achieved are only as good

as the models which are developed for these complex pieces of software. In addition, these

tools typically have simple models of networks and protocols – known to be inaccurate. Most

13

important, no direct experimentation with applications, middleware, networks, and grid

resources is supported.

2.1.2 Network Simulation

Many research efforts explore network and computation simulation systems and techniques

in order to model a wide range of distributed systems and networks. However, in early systems,

distributed applications and networks have been studied largely separately – each community

employing relative simple models for the other domain. These separate tools cannot be easily

composed. For example, many network simulators based on packet-level discrete-event

simulation that have been built which provide accurate network environment (e.g. NS-2[30],

GloMoSim [31]，and PDNS [32]).

NS-2 [30] is a sequential discrete-event simulator that enables the simulation of Transport

Control Protocol (TCP), routing and multicast protocols over wired or wireless networks. NS-2

allows network researchers to study and evaluate specific network protocols under various

network conditions, an essential step to understand their behavior and performance.

PDNS[32] is an extension of NS-2 with improvement in capacity by using distributed

hardware. In order to achieve the goal of limited modifications to the base NS software, we

chose to use a federated simulation approach where separate instantiations of NS modeling

different sub-networks are executed on different processors.

GloMoSim[31] is designed to support simulation of very large wireless mobile networks

with thousands of nodes. It is developed based on the Parsec parallel simulation language.

GloMoSim can be used to simulate specific wireless communication protocols in the protocol

stack.

In terms of grid environment, a common issue of these tools is that they can only capture

part of what is relevant to future distributed systems which couple resources and networks, and

14

have adaptive applications. They do not model other resources and they do not enable the

network simulations to be coupled directly to applications. While it is possible to write

application module for the simulators, the process is labor-intensive, since the applications may

evolve rapidly. Furthermore, the abstraction and approximation can lose subtle details which

may be important to application behaviors and performance, since the users may not understand

the application well.

2.1.3 Network Emulation

Emulation refers to the ability to introduce the simulator into a live network; it can be used

to study the application performance directly. Usually, network emulation supports direct

application execution and intercepts the live application traffic transparently. However, instead

of using network simulator, it usually uses software routers or simulated routers to approximate

the network behavior.

The dummynet[33] is the most popular of this category. As a flexible bandwidth manager

and delay emulator, dummynet permits the control of network traffic going through the various

network interfaces, by applying bandwidth and queue size limitations, and simulating delays

and losses. In its current implementation, packet selection is done with the ipfw program, by

means of "pipe" rules. A dummynet pipe is characterized by a bandwidth, delay, queue size, and

loss rate, which can be configured with the ipfw program. Pipes are numbered from 1 to 65534,

and packets can be passed through multiple pipes, depending on the ipfw configuration.

NSE [34], an adaptation of NS-2, also has an emulation facility. When using the emulation

mode, a soft real-time scheduler is used, which ties event execution within the simulator to real

time. Provided sufficient CPU horsepower is available to keep up with arriving packets, the

simulator virtual time should closely track real-time. If the simulator becomes too slow to keep

15

up with elapsing real time, a warning is continually produced, if the skew exceeds a pre-

specified constant threshold.

The benefit of emulation approach is the speed, since it is required to be fast enough for

real-time execution. However, it is either limited by scalability, or by the accuracy of network

modeling. For example, the dummynet cannot capture the congestion of multiple flows on a

single path, since every flow behavior is modeled independently, and there is no global

coordination. The NSE uses detailed network modeling based on a sequential simulator; its

capability is limited for large network emulation. To address these issues, there are many other

on-going research projects on advanced emulation, such as ModelNet [35] and Emulab [36].

However, as we will show in related work in Chapter 9, they have major difference with our

online simulation approach, and they are not sufficient for our virtual grid modeling target.

2.1.4 Real Testbeds

Real testbeds use a specific set of real resources for experiments, such as PlanetLab [37]

[37], TeraGrid [2], and GrADS testbed [9]. Real testbeds have the advantage of providing high

speed execution and, of course, realistic execution. However, actual testbeds have a number of

limitations, including: (i) limited experimental configurations (cannot run experiments for a

wide range of platform scenarios, or for platforms or networks that do not exist); (ii) non-

observability – phenomena occur which are not observable in routers, systems, networks, etc.,

and (iii) reproducibility – phenomena occur which cannot be repeated to be understood. These

barriers are a real limitation to understanding important behaviors, and thereby, deeper

understating of the dynamics behaviors. We believe that simulation tools such as the MicroGrid

are an essential complement to the use of real testbeds.

16

2.2 Parallel and Distributed Discrete-Event Simulation

The foundation of the Microgrid, online network simulation, is at parallel and distributed

discrete-event simulation at the packet level.

2.2.1 Discrete-Event Simulation

Simulation is the imitation of the operation of a real-world process or system over time.

Some real-world systems are so complex that models of these systems are virtually impossible

to solve mathematically. Numerical computer-based simulation can be used to mimic the

behavior of the system overtime. Data can be collected from the simulation as if a real system

were being observed.

A simulation should contain (1) state variables to represent the state of the physical system,

(2) some logic and rules on state variable update to model the evolution of the physical system,

and (3) some representation of time.

Usually a simulation consists of two layers. The first layer is the simulation engine, which

provides the basic components of time, entity, event, channel, and process. The second layer,

simulation model, builds upon the simulation engine and provides the virtual representation of

real world systems.

2.2.1.1. Simulation Time

Time, in particular simulation time, is a very important concept in the simulation. There are

several different notions of time that are important when discussing a simulation.

Physical Time: the time in the real-world system.

Simulation Time: an abstraction used to model physical time. It is defined as a totally

ordered set of values where each value represents an instant of time in the physical system being

modeled. Sometime it is also referred as virtual time.

17

Wall-clock Time: the time during the execution of the simulation program

The progression of simulation time during the execution of the simulation may or my not

have a direct relationship with the progression of wall-clock time. Simulations can be classified

according to their relationship:

1) Real-time Simulation: the simulation time advances as fast as the wall-clock time. This

kind of simulation usually involves interaction between simulated and physical systems (like

human participants in a training exercise).

2) Scaled Real-time Simulation: the simulation time advances faster or slower than wall-

clock time by some constant factor. For example, the simulation may be paced to advance 1

second of simulation time for each four seconds of wall-clock time, making the simulation

appear to run four times slower than the real world. This technique is often used when the

simulation cannot keep up with the speed of the real system with available physical resources,

such as in our online network simulation at Chapter 4.

3) Non-constraint Simulation: there is no relationship between the simulation time and

wall-clock time. It can make progress as fast as possible. This approach is usually used in pure

simulation.

2.2.1.2. Discrete-Event Simulation

Simulations that utilize a discrete event system are called discrete-event simulations. Most

simulation systems can be categorized as either discrete or continuous though, “Few systems in

practice are wholly discrete or continuous, but since one type of change predominates for most

systems, it will usually be possible to classify a system as being either discrete or continuous”

[38]. A discrete system is one in which the state variable(s) change only at a discrete set of

points in time. For example, the computer network can be treated as a discrete system by

setting appropriate state variables. If we treat a network packet as the minimal unit of the

18

network model, then system events (packet send, packet arrival, and packet dropping) only

happen at a discrete set of points in time. So the system state variables, such as packets number

in a queue, only change at discrete points.

 While (simulation is going) {

Remove the event with smallest time stamp from event list

Set the simulation time to the time stamp of this event

Execute the event handler, it may put new events to the event list

}

Figure 2.1 Main Loop in an Event-driven Execution

Discrete event simulation can work in an event-driven execution mode. In discrete event

simulation system, the simulation time is a set of totally ordered values, representing state

variables that are updated when “something interesting” occurs. The “something interesting” is

referred to as an event, where an event is an abstraction to model some instantaneous action in

the physical system. An event may change state variables and create new events. Each event has

an associated time stamp indicating the simulation time that the event occurs. So the simulation

time jumps from one event to the next event. The simulator maintains a priority queue of events

following the timestamp order, and always handles the next event with the smallest timestamp

(Figure 2.1).

Event-driven execution can be combined with real-time or with scaled real-time modes by

preventing the simulation from advancing to the time stamp of the next event until wall-clock

time has advanced to the time of this event.

2.2.2 Parallel and Distributed Simulation

When the simulated system becomes too complex to be simulated by a single computer

node, it can exploit parallel and distributed simulation. The complex physical system can be

viewed as being composed of some number of subsystems and each subsystem can be simulated

19

by a logical process (LP), and interactions between physical subsystems can be modeled by

exchanging time-stamped messages between the corresponding logical processes (Figure 2.2).

A

B

D

C

A,B,C,D: Logic Processe

Parallel
Execution

 Figure 2.2 Parallel Executions of Multiple Logic Processes

While this paradigm would seem to be ideally suited for parallel/distributed execution,

synchronization must be used to avoid causality errors. That is, each logical process must

process all of its events, both those generated locally and those generated by other LPs, in time

stamp order. Otherwise, it is possible that the computation for one event may affect another

event in its past. It is easy to maintain the event order in a sequential simulation by using a

central event queue. In parallel/distributed simulation, however, it is not enough to use local

event queues alone. As shown in Figure 2.3, the LP D cannot process the event E14 from LP B

until it can be sure that no other LPs may send it events with a timestamp smaller than 14. For

example, LP A may generate an event E12 , which may be physically delivered to LP D later

than E14. If E14 is processed earlier than E12 in LP D, this is called a causality error. The general

problem of ensuring that events are processed in time stamp order is referred to as the

synchronization problem.

20

A

D

E10

E12

Wall-clock
Time

Logic
Process

E14

B

E5

E15

Ex: Event at virtual time x

Figure 2.3 Causality Errors

Two major approaches to synchronization algorithms are conservative synchronization and

optimistic synchronization, different in how to move the simulation time. Here we will

introduce the details of conservative synchronization, since it will be used in our network

simulator.

2.2.2.1. Conservative Synchronization

To prevent causality errors, simulation using conservative synchronization does not process

an event T until it is sure that no new events will have a timestamp smaller than T. To achieve

this, some mechanism is required for an LP to indicate to other LPs the current lower bound on

the timestamp of events it may send out in the future. Null messages can be used for this

purpose, which are used only for synchronization and do not represent any physical events in

the simulated systems. As shown in Figure 2.4, a null message with timestamp T1 from LP C to

LP B promises that no events with timestamp smaller than T1 will be sent from LP C. After LP

B receives all null messages from all other LPs, LP B can figure out what the upper bound of

the timestamp is, and all events with smaller timestamps can be processed safely. In this case,

all events with timestamp less than Min(T1, T2) can be processed safely.

21

wall-clock time

Logic Process

A

B

C

No message until T1

Min(T1,T2)

No Message until T2

Figure 2.4 The Null Message Algorithm

Then the problem that remains is how to set the timestamp in a null message. Here comes

one important concept in this Null Message algorithm: Look-ahead, which can be defined as the

following:

Look-ahead: If a logical process at simulation time T can only schedule new events for

another LP with time stamp of at least T+L, then L is referred to as the look-ahead for the

logical process.

In reality, the look-ahead represents the physical limitations on how quickly one physical

process can interact with each other. For example, in network simulation, it could be the link

latency between two routers; in air traffic simulation, it can be the time required from an

airplane to fly from one airport to another airport.

So the time stamp of a null message can be set to the current time of the LP plus its look-

ahead.

A major issue in the Null Message algorithm is that its performance depends critically on

the look-ahead value, which decides how frequently the LPs are required to exchange null

22

messages. As we know, null messages do not represent any useful activity in the simulated

systems and are pure simulation overhead.

Global barrier

Wall-clock time

Logic Process

A

B

C

Figure 2.5 Synchronous using Barrier Synchronization Protocols

The Null Message algorithm can be implemented efficiently using a mechanism called

barrier synchronizations. A barrier is a general parallel programming construct that defines a

point in time when all the processors participating in the computation must stop. As shown in

Figure 2.5, before a LP process enters the barrier, it sends null messages to other LPs; then it

blocks and waits until it receives all null messages from the other LPs. The barrier operation is

completed when all LPs have received all null messages, and then the LP is allowed to resume

execution until the next barrier point, which is the current time plus look-ahead.

Up-going
Null message

Down-going
Null message

Figure 2.6 Global Barrier using a Tree Structure

23

The benefit of using a barrier is that we do not have to send null messages between all pairs

of logical processes. Instead, we can organize the logical processes efficiently and reduce the

number of null messages greatly. If, the logical processes are on a shared-memory

multiprocessor, the barrier can be easily achieved by using a global synchronization variable. If

the logical processes are on a distributed system like a cluster, all LPs in a machine can

synchronize locally and then use a representative to synchronize with other machines. The

machines can be organized as a balanced tree with each node of the tree representing a different

machine (Figure 2.6). When a leaf machine reaches the barrier points, it sends a null message to

its parents. Each machine will wait until it gets all null messages from its children and then send

a null message to its own parent. After the root receives all outstanding null messages, it knows

every machine has entered the barrier. And this information can be propagated back to all

machines following the revert tree.

2.3 Graph Partitioning

Our work exploits graph partitioning algorithms as a key tool in solving critical load

balance problems, necessary to provide scalability for our network simulator

2.3.1 Single-Objective Single-Constraint Graph Partitioning

Problem

Typical graph partitioning algorithms generally solve single objective partition problems

such as:

Given an input graph G = (V, E) with weighted vertices and edges, we want to partition it

into k parts such that,

- each part has roughly the same number of vertex weight (constraint)

- the edge-cut (the number of edges) that straddles partitions is minimized (objective)

24

The task of minimizing the edge-cut is considered as the objective and the requirement that

the partitions will be of the same size is considered as the constraint. This single-objective

single-constraint graph partitioning problem is can be efficiently solved with multi-level k-way

graph partitioning algorithms[39], and it is widely used for static partitioning in scientific

simulation.

2.3.2 Multi-Constraint Graph Partitioning Problem

However, this single constraint graph partitioning problem is not sufficient to model many

of the underlying computational requirements, found in today’s large scale applications. For

example, in a large distributed application, we need to balance both the computation load, as

well as the memory consumption, across multiple physical nodes. Both memory and

computation are two distinguished constraints, and if the partitioner fails to balance both

requirements, it is hard to achieve good overall application performance. This problem can be

solved by modeling it as a graph in which every vertex has an associated weight vector w of

size m, every weight represent an balance requirement, every edge has a scalar weight, for

which we find a partitioning such that each partition has roughly equal vertex weight with

respect to each of m weights and the edge-cut is optimized. This problem is usually referred to

as the multi-constraint graph partitioning problem, and there are many efficient algorithms

available [40, 41].

2.3.3 Multi-Object Graph Partitioning Problem

Beside multiple balance requirements, a complex distributed application may have multiple

optimization requirements. For example, a multi-phase application can consist of multiple

phases; each phase has quite different communication patterns. If we want to minimize the

communication traffic across the network, we should put multiple phases together, and balance

the requirement of different phases. This problem can be solved by modeling it as a graph in

25

which every edge has an associated weight vector w of size m, each weight represents an

optimization requirement, every vertex has a scalar weight, and for which we find a partitioning

such each partition has a roughly equal amount of vertex weight and the edge-cut with respect

to each of m weight and the edge-cut is optimized. This problem is usually referred to as a

multi-objective problem, and there are some efficient algorithms to solve it [42].

There have been a large number of graph partitioning packages targeted at parallel

computing since the early 90’s, including METIS[42], Chaco[43], Jostle[44], PARTY[39], and

Zoltan[45]. As a well studied problem, we expect that any high quality graph partitioning

package (in this case METIS[42]) should produce results of comparable partition quality to

other graph packages. Our choice of METIS is mainly due to its performance and the flexibility

in supporting multiple constraints, as well as multiple objectives.

26

Chapter 3 Dissertation Statement

The focus of our research is to enable the study of dynamic interaction between applications,

middleware, resources, and networks in a controlled environment. We first describe the

hardware and software context for this dissertation in Section 3.1, and then we define the

simulation problem in this context in Section 3.2. Our dissertation statement is given in Section

3.3, while Section 3.4 discusses the way to evaluate our approach.

3.1 Context

First, we introduce applications which are the subjects of our performance study. And then

we describe the software and hardware resources to be used for the study.

3.1.1 Target Applications, Networks, and Resources

In the last few decades, the prospects of large-scale distributed applications deployed across

the Internet have grown phenomenally. Examples of those applications include distributed

supercomputing applications, peer-to-peer file sharing application, distributed interactive

simulation (DIS) for training and planning in the military, and real-time widely distributed

instrumentation systems[5]. These applications often involve thousands of geographically

distributed endpoints (including computers, storages, and instruments) connected through wide

area networks with latency ranging from a few milliseconds to a few hundreds milliseconds.

They are sufficiently coarse-grained that they can run on the Grid, but their performance greatly

depends on network conditions, such as traffic congestion and routing stability. When compared

to traditional parallel and distributed computation in a local area network, the conditions of

27

wide area network show much larger variability and therefore lead to much more unstable and

unpredictable performance. Moreover, resource hungry large applications can not only affect

the network performance with their multi-gigabit traffic streams, but may also be network aware

and respond to current network performance. Therefore, it is critical to study the application

behavior under different network conditions.

These applications often have complex logic, coupling large computation and storage

resources. They can also be built above grid middleware, such as Globus[5], Legion[6], and

Condor[7]. Furthermore, with help from emerging grid software tools, such as the Network

Weather Service (NWS)[23] and GrADS developing framework[9], more applications can

adapt to the available network and resource conditions for better performance. All these

components together make a complex system which may exhibit non-linear dynamic behavior,

and depend on some subtle interactions between multiple components.

It is very important to understand the performance and behaviors of these applications under

grid environments. It can be used to predict the application performance before deployment,

decide the resource requirement for predicted performance, diagnose the system abnormality

after deployment, and detect the system performance bottleneck for upgrading.

3.1.2 Execution Platform

In order to understand these applications, we need an execution platform for simulation

experiments. First of all, the platform hardware and available software should be scalable in

order to support large scale simulation. Second, the cost effective is also an important criterion,

since it decides whether or not the platform will be widely available. In our study, we choose

the cluster platform, based on the following considerations.

First, clusters have become a cost effective and popular way to build large-scale systems.

The low latency cluster communication hardware and software (like Myrinet and MPICH-GM)

28

have improved their performance greatly. These days, most supercomputers are built on cluster

technology, and small clusters are widely available in research communities. Large scale SMP

machines are too expensive for most researchers.

Second, also for cost reasons, cluster systems usually have more memory than SMP

machines. It is normal for a 64-node cluster to be equipped with 256GB memory, which is

comparable to the 288GB memory of the high end Sun Fire 12K Enterprise Server [46]. Since

most simulations require a great deal of memory, cluster systems present a big advantage over

SMP based parallel simulation.

Third, using flexible cluster technology is often easy to achieve large network throughput.

For online network simulation, the simulation engine needs to exchange network traffic with

applications running on other machines. An SMP machine usually has very high inter-processor

bandwidth, but the external network I/O is usually quite limited, since only a few I/O processors

can process external network traffic. This may quickly become a bottleneck for the whole

simulation system. Cluster systems, on the other hand, are quite different. With current network

switches, the application traffic can be easily handled by every simulation node and efficiently

distributed to different nodes for better load balance.

Our target cluster is one that can fit in a single room and is entirely connected by at least

one high performance network, such as switched Fast Ethernet or Myrinet. Bandwidths of the

network range from 100Mbps up to 10Gbps, and the network latency for small message should

be around a few microseconds. In addition, our target cluster should have TCP/IP protocols and

a high performance MPI implementation available, such as MPICH-GM. The MPI is primarily

used for the communication within the distributed network simulation.

29

3.2 Problem

To meet the challenge outlined above, integrated simulation tools are required for modeling

virtual grid systems. The questions are how to do it, how to do it accurately, and how to do it

efficiently with high scalability.

3.2.1 How to Provide a Virtual Gird Environment

A virtual grid environment should be fully virtualized, which means applications can be

executed on the virtual grid without any modification, they should use all virtual resources,

storage, and networks transparently. This is important to maximize the range of experiments

and their realism. Compared to traditional emulation systems, which also support directly

execution of real applications, a virtual grid environment is more complex because it must

support virtual resource identification, virtual resource discovery, and virtual resource

interaction. It is critical to use real applications and middleware transparently; it is also required

in order to enable the direct study of dynamic interactions between applications, middleware,

resources, and networks.

For example, in a typical Globus application, one may use the GIS system to discovery

suitable resources first, and then submit the job to multiple gatekeepers, which launch jobs on

local resources through job-managers. There are many open questions with regards to

supporting Globus application transparently, they include: How do we describe and discover

virtual resource in the GIS system; how do we associate virtual resources with gatekeepers; and

how are applications launched from job-managers on virtual resources.

3.2.2 How to Simulate Efficiently and Accurately

Although highly accurate simulations are always desirable, with limited physical resources

one must make tradeoffs between accuracy and efficiency. For example, there are accurate

30

simulators for processor, memory, and disks. But if those simulators were used for grid

modeling, they would take too much time to yield any results, despite their accuracy. On the

other hand, the resource simulation must be accurate enough in capturing the underlying details

for it to be useful. For example, in a peer-to-peer application, it requires hundreds of endpoints

to build a representative overlay network structure.

So the first question to ask is how much accuracy is required for a specific resource

simulation, or could we reduce the accuracy requirement without hurting the overall accuracy of

the whole simulated system. For example, do we need packet level detail for network simulation,

and do we need the instruction level simulation for computation resource modeling. After this,

we should determine how to simulate it efficiently. Our choices may include how to simplify

the routing protocol in simulation without affecting the final routing decisions, or how to

aggregate the simulation of a large number of idle virtual resources with a single physical

resource. This decision making is critical to achieve accurate modeling of a virtual grid, in a

timely manner, given the bounds of physical resource constraints.

3.2.3 How to Simulate with High Scalability

Another challenge in modeling grid dynamics is the scalability of the simulation tools.

Essentially this means, can the simulation tool use physical resources efficiently and also, can it

support simulation of larger networks or applications when more resources are available. This

challenge is decided by both the scale of the Internet itself, which includes millions of hosts and

routers, and the scale of grid applications, which usually consist of hundreds and thousands of

processes distributed across a wide area network. To make a meaningful grid simulation, it

should be able to support a network comparable to a significant part of the real Internet, with

reasonable background traffic; it should also be able to support real applications with thousands

of endpoints.

31

In Grid simulation, the scalability issue is particularly critical for the network simulation.

The other components, such as computing nodes and storage systems, can be simulated in

parallel given enough computing resource. However, these components need communication

and coordination to function correctly, which in a distributed simulation happens through the

network system. Due to small network delay and fast interaction among network routers and

endpoint hosts, the whole network systems must be simulated with enough concurrency and

tight synchronization.

Beside the implementation efficiency we mentioned above, there are two major factors

affecting the scalability of a distributed simulation system. First, scalability depends on

available parallelism, and thus, the problem is whether and how to find large parallelism for a

given network simulation. There is significant on-going research on parallel and distributed

network simulation. Some of these solutions exploit the parallelism in network simulation on

SMP machines, but they suffer from limited internal hardware scalability. Only a few recent

simulators support exploiting scalable message passing systems, such as a cluster system.

However, none of them have demonstrated good scalability when challenged with irregular

network simulation problems. This is due, mainly, to the fact that the communication overhead

on cluster systems is much larger than that of SMP machines, and thus, it requires more

parallelism in the simulation problem itself, in order to achieve good performance.

Second, scalability depends on the achieved load balance. Load balance is important

because it directly affects the simulation performance: the speed of the parallel/distributed

simulation is limited by the speed of the node with the most loads. How to achieve load balance

across simulation engine nodes is still an open research problem. Since the simulation engine

load depends predominately on the amount of simulated traffic, which may change dramatically

during the simulation, balancing the simulation load is a big challenge. Our choice of cluster

32

platform also makes load balance more difficult, since it basically rules out the possibility of

dynamic load balance, due to the high overhead of task migration across machines.

3.3 Dissertation Statement

My thesis is:

Accurate and comprehensive study of the dynamic interaction of applications, middleware,

resources, and networks is important and is possible with scaled real-time online network

simulator. Using sophisticated load balance algorithms by exploiting a range of static network

and dynamic application information, distributed network simulation based on discrete-event

simulation engine can be scalable and support high fidelity simulation of a large grid system.

Scaled real-time simulation is our approach to enable hybrid simulation of multiple

simulation modules. As we argued in the last section, it is essential to model multiple resources

and network together for modeling dynamic interaction of applications, middleware, resource,

and networks. Scaled real-time simulation is a special kind of simulation in which simulation

time advances with constant rate, usually slower than real-time. It is different from traditional

simulation and emulation approaches in the way the simulation time advances: in traditional

simulation, the simulation time advances as fast as possible, and in emulation approaches, the

simulation time advances just as real time. Our approach relaxes this real-time requirement of

emulation and allows more flexible resource speeds and ratio. Scaled real-time simulation is the

base of coordinating multiple hybrid simulation modules without complex synchronization

mechanism.

Online network simulation is our approach to improve the simulation accuracy. It is an

enhanced network simulation technology, which can pass live traffic from application through

the simulated network to its destination, and support direct application execution. Thus, online

33

network simulation allows the study of real, temporal and feedback behavior of network and

application protocols, as well as their interaction with other network traffics. The scaled real-

time online network simulation technique, plus other resource modeling and virtualization

methods, can provide accurate simulation of virtual gird environments.

To support large-scale simulation, the key speed limits are the simulation efficiency and the

load balance of distributed network simulation. The load balance problem is known to be hard,

since simulation workload is proportional to network traffic packet number, which changes

dramatically with bursts of traffic loads in large network. The characteristics of grid

environment with highly distributed applications and complex dynamic interactions between

applications, networks and resources make the problem even harder. Our sophisticated load

balance algorithms exploit a range of static network and dynamic application information to

improve the load balance. Good load balance is important for the performance of the network

simulation and therefore for the scalability of the entire virtual grid model.

3.4 Success Criteria

To demonstrate that our scaled real-time online simulation technique can successfully

enable hybrid simulation of multiples resources and application together, we need to present our

design and implementation. Success will be demonstrated by providing a simulation toolkit

which can provides modeling of virtual grid environment. Using this simulation toolkit, we will

construct a range of grid environments and execute a batch of real applications directly on the

simulated grids.

In addition to the support of direct application execution on virtual grids, fidelity is also an

important success criterion. For fidelity, the basic question is whether we have developed a

simulation mechanism that can provide detailed and accurate modeling of the virtual grid.

Success will be demonstrated by a range of validation experiments. We will first provide

34

validation on the accuracy of single resource modeling, including network and computation

resource. The validation experiments will show that the network simulator achieves correct

network latency and bandwidth under multiple network configurations and that the computation

resource simulation enforces the correct resource usage under multiple resources and

application configurations. Then we will validate that for a given real application, the modeling

is still accurate. The basic methodology is to use the MicroGrid to simulate a few real systems,

and then, compare the application performance on real systems directly to that on the simulated

systems. The application execution time between the real systems and the simulated systems

should match.

Using advanced load balance algorithms to achieve good scalability is also a critical claim

in our dissertation statement. Success will be demonstrated by designing and implementing

those load balancing algorithms, applying them on experiments with a range of network

topologies and application configurations, and improving the scalability of the whole simulation

systems in the term of load imbalance, application simulation time, and parallel efficiency (see

Section 7.1.3 for detailed metrics definition).

We will also show that the scalability we achieve is good enough for detailed grid modeling.

Success will be demonstrated by executing simulations of Grid applications over large network

systems, including a simulation of a large ISP network with 20,000 routers and hosts, a

simulation of the real Internet BGP simulation of more than 16000 Autonomous Systems, and a

simulation of a large scale Denial of Service attack on an 200-node overlay network with 200

users and 10Gbps of attacking traffic. We set these scale thresholds (network size, application

number, traffic volume, etc.) because we think they are large enough to keep the major feature

of a large grid environment and that the simulation results are applicable to real grid

environments.

35

Chapter 4 Approach

In this chapter, we discuss high level concepts behind our approach to virtual grid modeling,

and discuss and justify major design decisions in the MicroGrid.

4.1 Overview

Using scalable physical resources, the basic objective of the MicroGrid is to provide a

virtual grid environment for real grid applications and middleware, enabling direct execution on

a large number of virtual resources with arbitrary performance ratios (Figure 4.1).

Figure 4.1 The Approach in the MicroGrid

Addressing the problems of constructing such a high-fidelity virtual grid, as listed in

Section 3.2, our approach to integrated online simulation of virtual grid environments is as

follows.

1) Resource Virtualization using Live Application Interception. The application

perceives only the virtual grid resources (host names, networks), independent of the

physical resources being utilized. Using live application interception, we can also

Grid Application

Virtual Grid, “MicroGrid”

MicroGrid Software

LAN Workgroup Scalable Cluster Heterogeneous Environment

Grid Application

Virtual Grid, “MicroGrid”

MicroGrid Software

LAN Workgroup Scalable Cluster Heterogeneous Environment

36

virtualize the grid information services and virtualize/simulate the appropriate operating

system resources.

2) Computation Resource Simulation using Soft Real-time Scheduling. The target is to

achieve accurate computation resource modeling with less overhead and less

prerequisites. Based on direct application execution and user level process scheduling,

the soft real-time scheduling approach can efficiently model a large number of virtual

resources on a single physical host.

3) Network Modeling using Scalable Online Simulation. To improve the scalability of

virtual grid modeling, the traffic-based load balance for distributed conservative

discrete-event network simulation is used. The distributed simulation can exploit

parallelism in the network simulation problem, and our sophisticated load balance

algorithms can use a range of network and application information to achieve good load

balance and performance of the entire simulation.

4) Coordination of Multiple Simulation Modules using Scaled Real-time Execution. To

provide a coherent global simulation of multiple virtual resources, we need to

coordinate the simulation speed of different virtual resources. This can be achieved

through scaled real-time execution of all simulation modules. Based on the desired

virtual resources and physical resources employed (CPU capacity and network

bandwidth/latency), the virtual time module determines the maximum feasible

simulation rate, under which all resource simulation can be run in a functionally correct

manner.

We will discuss these approaches in detail in the following sub-sections.

37

4.2 Resource Virtualization using Live Application Interception

To virtualize a grid environment, the MicroGrid intercepts all direct uses of resources or

information services made by the application. In particular, it is necessary to mediate over all

operations which identify resources by name, either to use or retrieve information about them.

We first consider general mediation, and then we consider the specific issue of information

service.

4.2.1 Virtualizing Resources

Hardware

Virtual Machine Monitor

OS OS

APP APP

OS

APP

Figure 4.2 Virtualization based on VMM

Virtualization, in a rather loose definition, is a framework that devides the resources of a

computer into multiple execution environments. More specifically, it is a layer of software that

provides the illusion of a real machine to multiple instances of virtual machines. In general,

there are two possible ways to virtualize resources. The first approach is the virtual machine

monitor (VMM) approach (Figure 4.2), including VMWare[47], Denali[48], Entropia[12], and

Xen[49]. VMMs usually provide full virtualization, while a guest operating system instance is

required to provide a virtual machine on which traditional applications can be directly executed.

However, the complexity and overhead of VMMs is so large that it is infeasible to create many

instances on a single physical machine. For example, the CPU performance loss of VMWare is

38

between 9-15%. Also, VMMs have little support for virtual network performance modeling,

which we will discuss in Section 4.3.

Hardware

Shared OS

App with
Virtual ID

App with
Virtual ID

App with
Virtual ID

Figure 4.3 Virtualization based on Virtual Host ID

Another approach is to just virtualize the host identity (Figure 4.3). In general, we need to

virtualize processing, memory, networks, disks, and any other resources being used in the

system. However, since operating systems effectively virtualize each of these resources --

providing unique namespaces for each process and sharing of CPU, disk, etc-- the major

challenge is to virtualize host identity. The benefits of this approach are the simplicity and

efficiency; consequentially, it can be naturally used for virtual network performance modeling.

This approach is especially good if one wants to create a large number of virtual hosts, but

maybe only a small part of them are active at the same time. The idle virtual machines basically

introduce no overhead to the physical machine, a feature quite different from that of the VMM

approach. Of course, this requires added resource modeling to guarantee correct virtual resource

performance.

In the MicroGrid, we choose the virtual host identity approach, since we intend to simulate

a very large number of virtual hosts. Each virtual host is mapped to a physical machine using a

mapping table of virtual IP address to physical IP address. All relevant library calls are

intercepted and mapped from virtual to physical space using this table. These library calls

include:

gethostname()

39

bind, send, receive (e.g. socket libraries)

process creation

By intercepting these calls, a program can run transparently on a virtual host with the

appearance of the virtual hostname and IP address. The interception ensures that the program

can communicate with processes running on other virtual Grid hosts. Many program actions

which utilize resources (such as memory allocation) only name hosts implicitly, and thus, do not

need to be changed. Any socket-based application can be run on the virtual Grid as the

MicroGrid completely virtualizes the socket interface.

4.2.2 Virtualizing Information Services

Information services are critical for resource discovery and intelligent use of resources in

Computational Grids. To provide a fully virtualized Grid environment, we also need to provide

information services for virtual resources. For example, when it comes to supporting the Globus

middleware, this problem amounts to virtualization of the Globus Grid Information Service

(GIS)[50].

One key problem is how to get application to look at the virtual information service. One

straightforward solution is to run an information service in the virtual world, and store and

retrieve all virtual resource information directly. This is a simple solution in logic, but it

introduces a large overhead in experiments. For example, in Globus, this requires a GIS server

for every experiment, it takes significant time to initialize the GIS server, and makes it hard to

add simulation-related information.

Instead, our approach is to use a real information server --- no additional servers or

daemons are needed. In this approach, an application running in the simulation environment

needs to talk to a server in the real world, and it requires special support from the network

virtualization module. The network virtualization module should intercept all access to network,

40

identify all access to virtual information services, and forward them to the real information

server directly, instead of routing through the network simulator.

Beside this transparent access issue, desirable attributes of a virtualized information

services include:

1) Compatibility: virtualized information should be used as before by all programs

2) Identification and Grouping: easy identification and organization of virtual Grid entries

should be provided

3) Use of identical information servers: there should be no incompatible change in the

entries

Our approach achieves all of these attributes by extending the standard GIS LDAP records

with fields containing virtualization-specific information. Specifically, we extend records for

compute and network resources. Extension by addition ensures subtype compatibility of the

extended records (a la Pascal, Modula-3, or C++). The added fields are designed to support

easy identification and grouping of the virtual Grid entries (there may be information on many

virtual Grids in a single GIS server). Figure 4.4 and Figure 4.5 show examples of the

extensions to the basic host and network GIS records.

 hn=vm.ucsd.edu, ou=CSAG, ...

Is_Virtual_Resource=Yes

Configuration_Name=Slow_CPU_Configuration

Mapped_Physical_Resource=csag-226-67.ucsd.edu

CpuSpeed=10

Figure 4.4 Virtual Host MDS Records

41

 nn=1.11.11.0, nn=1.11.0.0, ou=CSAG

Is_Virtual_Resource=Yes

Configuration_Name=Slow_CPU_Configuration

nwType=LAN

speed=100Mbps 50ms

Figure 4.5 Virtual Network MDS Records

4.3 Computation Resource Simulation using Soft Real-time

Scheduling

To provide accurate virtual grid modeling, the MicroGrid need to simulate every

computation resource as a component of the overall simulation, providing real-time

performance feedback to the simulation and regulating the rate at which virtual time is allowed

to progress. The major challenge in computation resource simulation is that we need to simulate

a large number of resources efficiently, due to the fact that a typical grid environment usually

includes thousands or more resources which need to be simulated in a much smaller cluster

system.

One possible solution to the above challenge is using the VMMs in Section 4.2, which also

provide computation modeling for virtual machines. This approach is accurate but involves

more overhead. Another possible approach is to use real-time operating systems to schedule the

execution of virtual machines, which can be more accurate, but less flexible, since real-time

operating systems are not widely deployed.

42

CPU
Controller

Virtual
Machine

APP

APP

APP

Virtual
Machine

APP

APP

Virtual
Machine

APP

APP

APP

Physical Machine

Figure 4.6 Computation Resource Simulation using Soft Real-time Scheduling

Based on the direct execution of application and resource virtualization, computation

resource simulation is to provide appropriate performance for the processes running on a virtual

compute resources. As shown in Figure 4.6, the MicroGrid uses a CPU controller, a soft real-

time process scheduler, on each physical host to control resource utilization of the processes

resident with each virtual machine. Periodically, the controller checks the CPU usage of every

application process on the physical machine, and then calculates the latest CPU usage of each

virtual host. If the amount of effective cycles exceeds the speed of the virtual hosts, the

controller stops all processes of that virtual host; otherwise, the controller wakes up the

processes and lets them proceed.

In theory, this approach can accurately simulate an arbitrary number of virtual computation

resources by tuning the simulation speed. However, due to the limitation of non-real-time

operating systems and minimal OS scheduling unit, the CPU controller can neither accurately

monitor the real resource usage of every application process, nor stop and wakeup a special

process at the exact points it should. We will discuss in more detail how to address this issue in

Section 5.2.

43

To summarize, our computation resource simulation approach is to use direct execution on

original operating system, and control the overall CPU time allocated to a specific virtual

machine. This light-weight approach is efficient and can support a large number of virtual

machines on a physical machine. Moreover, it is flexible, and can be used on any target

operating system of the real application. One major short-coming to this approach is low

accuracy, since it does not guarantee resource usage from the bottom line. However, as you will

see from the validation experiments in Section 6.1, the accuracy is sufficient for most

application simulation.

4.4 Network Modeling using Scalable Online Simulation

There are critical challenging requirements for network simulation in the MicroGrid:

accuracy, scalability, and support for direct application execution, and they are addressed in

Section 4.4.1, Section 4.4.2, and Section 4.4.3, respectively.

4.4.1 Packet Level Detailed Simulation

While significant advances have been made in aggregate modeling of network behavior[20,

21], at present only detailed packet-level or close analogs can model protocol dynamics

accurately, particularly in extreme cases[23]. This is especially true when we target our study on

application performance. Extreme cases are important. Since while they rarely happen in normal

operation, their consequence may be critical. For examples, for a distributed application, what is

the performance with routers in link saturation as happens under malicious Denial-of-Service

attacks? How could the routing system respond if there is temporary network partition due to

attacks?

Remember that we want to understand the behavior of individual applications, we want to

understand and diagnose anomalies, and we also want to understand behavior of collections of

applications and resources in ordinary and extreme circumstances. For all these purposes, the

44

details matter. Since network and application behavior depends on detailed packet behavior, and

feedback effects on network protocols and resource management are critical, the simulation

must use closed-loop feedback.

To capture as many as possible network protocol details, packet level simulation is required

to provide accurate modeling. For example, it is known that most applications use the TCP

protocol for network communication and their performance directly depends on the behavior of

TCP. However, TCP performance is sensitive to individual packet behavior. For instance,

whenever a TCP sender detects packet loss, it will reduce the congestion window size by half,

thus reducing the TCP bandwidth dramatically. Congestion window increase, which is additive,

takes a longer time to recover. Another example is the Nagel Algorithm[51] in TCP, which is

used to delay the sending of small data until more data are available, because sending large

packets has less overhead. However, this optimization may raise major performance issue for

interactive or RPC-based applications.

4.4.2 Online Network Simulation

Simulation Engine
Progress as fast as

poissible

Network Model

Simple
Application

Model

Real
Application

Traffic
Reference

Real
Traffic

User
Interface

Simulation Engine
with Constant Rate

Network Model

Simulation
Interface

Traffic
Reference

User
Interface

Figure 4.7 Online Network Simulation vs. Network Simulation

Network simulators, such as the NS-2, have been widely used to study network protocol

and network performance for a long time. Usually these tools focus on the network itself, and

45

they cannot be used to study application directly. The user must write a simulation module to

abstract and mimic the behavior of the application. It requires deep understanding of the

application to write such a performance module effectively, and it invariably introduces

unknown inaccuracy through this approximation and abstraction. With the coming of complex

distributed and Grid application, it becomes less and less feasible to write accurate application

modules for simulation. Instead, people want to study applications directly using an online

network simulation, an enhanced network simulation technology which can support direct

application execution by passing and modeling the behavior of live traffic from application

through the simulated network to its destination.

The MicroGrid supports direct execution of real applications to exercise complex

applications and to capture the subtle interaction between applications, middleware, and

operating systems. Just like the virtualization of network identity, the MicroGrid intercepts all

network related function calls in a given application, and redirects the traffic into the network

simulator. The packet movement and timing are modeled by the network simulator and the data

are feed back to real application at the other endpoint at the correct time (Figure 4.7). Here the

MicroGrid provides a virtual Grid environment and the user can use it as a real Grid testbed

transparently. We call this approach online network simulation.

The benefit of online network simulation is that the user can study application performance

directly, rather than building another application module for the simulation. This reduces the

overhead of simulation greatly, and since it catches all the details of the application

implementation as well as interactions between the application and the real system, it provides

more accurate and direct results to the users.

There are two major challenges in online network simulation. First, we need to intercept the

network traffic transparently; second, the delay between the application and simulator must be

46

negligible when compared to the simulated network delay, since this delay is not modeled by

the simulator. We will discuss this in more detail in Section 5.3.

There is another technique that has an objective similar to online network simulation, but

uses a different approach, called network emulation. Like online network simulation, network

emulation also supports direct application execution and intercepts the live application traffic

transparently. However, instead of using a network simulator, it usually uses software or

simulated routers to approximate the network behavior. The benefit of this approach is the raw

speed it offers. This approach often allows for emulation that is fast enough for real-time

execution. However, accuracy and flexibility are usually limited when compared with online

simulation.

4.4.3 Distributed Conservative Discrete Event Network Simulation

Here we describe and justify some of our design choices in network simulation.

4.4.3.1. Parallel vs. Distributed Simulation

To provide scalable large-scale simulation, we can use parallel discrete-event simulation.

Over the last two decades, parallel discrete-event simulation, or PDES for short, has been

recognized as an important and challenging research area. PDES is used when executing a

single discrete-event simulation program on a parallel computer, which can be either a shared-

memory multi-processor or a distributed-memory cluster of computers. By exploiting the

parallelism inside a simulation problem, parallel simulation overcomes the limitation of

memory and execution speed of sequential simulation. We can find in-depth review of the state

of art of PDES in the Fujimoto book[52].

In general, parallel simulation on shared memory machine is a much mature approach and is

expected to provide good performance, which is due primarily to simple programming model

and small communication overhead. However, distributed simulation on clusters using message

47

passing communication could be a better choice for large scale network simulation, based on

the following consideration.

First, clusters have become a cost effective and popular way to build large-scale systems.

As we mentioned in Section 3.1.2, clusters are widely available for researchers. Second, clusters

are more scalable than SMP systems. Currently all the largest supercomputers are based on the

clustering technology and some of them are available for public accesses in national computer

center, such as NCSA and SDSC. This provides the opportunity for extreme large-scale network

simulation. Third, the coming of advanced distributed simulation technology, including DaSSF,

enables a chance to build large scale network simulators based on distributed simulation.

4.4.3.2. Conservative vs. Optimistic Simulation

Conservative algorithms try to avoid any possible causality errors. In practice, they are

usually overly pessimistic, and force sequential execution when it is not necessary. This reduces

the achievable parallelism in the simulation and requires good look-ahead (see Section 2.1) for

concurrent execution and scalability. Optimistic algorithms, on the other hand, allow violation

to occur but provide a mechanism to recover, which can achieve greater parallelism and has no

limit on the look-ahead. However, optimistic algorithms usually have more complex control and

need special mechanisms for state saving, roll back, and dynamic memory allocation.

The preference for different synchronization methods depend on the structure of simulation

events and interaction between simulation entities, which in turn depends on the systems being

modeled. For online network simulation, we prefer the conservative algorithm for the following

reasons.

1) Easier to implement. From our experiments, we can also tell that the look-ahead in

network simulation is sufficient (with good partition algorithms) to achieve good speedup, even

48

when the absolute look-ahead is not very large: the network delay of a physical link (1-10

milliseconds).

2) Smaller memory footprint. In a large network simulation, we need to simulate thousands

of hosts and routers, and an even larger number of network packets. The memory requirements

are critical to the scalability of the whole system. Due to the property of optimistic simulation,

the simulator must keep the un-commit events for possible roll-back. Because of the nature of

high speed network traffic, this memory consumption can easily go out of control and degrade

the benefit of optimistic simulation.

3) More stable progress for real-time execution, which is critical for online network

simulation. The rollback of optimistic simulation may halt the simulation and affect the real

time simulation accuracy.

4.4.3.3. Automatic Load Balance for Scalability

As we discussed in Section 3.2, scalability is an open research challenge for network

simulation. The detailed packet level simulation requirements in the MicroGrid present an even

greater scalability challenge. In a large network consisting of thousands of routers and hosts,

there are a large number of traffic flows. It is a serious challenge to simulate such a large

network, which requires such a huge number of computation and memory resources. There is

already a lot of research going on to improve the scalability of network simulation. But much

of this research uses approximation, for example, reducing the network size by removing non-

bottleneck routers and links[53], relaxing the synchronization requirement[35], or even using

fluid flow to represent traffic[54]. As we have shown in Section 4.3.2.1, details matter and none

of these approximations are suitable for our purpose.

With the constraints above, we want to exploit the parallelism in the original network

simulation problem to improve scalability. Based on the specification of the virtual and the

49

physical resources, the MicroGrid needs to map virtual machines to physical hosts. To achieve

scalable performance, we must use automatic mapping to balance the compute and memory

load across physical machines and thus reduce the network traffic between them.

To achieve the optimal load balance is an NP-Hard problem[55], and this is impossible

without the network traffic information; in practice, a network mapping problem can be

naturally modeled as a graph partitioning problem and solved with the classical graph

partitioning algorithms with approximation. With detailed traffic information, we can estimate

the number of simulation events on each single link and use it to calculate the edge weight. We

will discuss this approach in more details in Section 5.4.

4.5 Scaled Real-time Execution

To maintain the correct execution timing relationship between the application and the

network, we must coordinate the pacing of the network simulator and the execution rate of real

application. The easiest way is to let both make progress in real-time mode. However, this

approach is not flexible and sometime infeasible, since the simulator might not powerful enough

to keep up with real-time execution. In this case the simulation must be slow down. For

example, if we want to simulate two 4GHz machines using a 1GHz machine, the application has

to be slowed down by a factor of 8, which means the simulation will require 8 times more than a

real system to complete. As shown in Figure 4.8, for an application taking 15 minutes of real

time, the simulation will take 2 hours (8 times) to complete.

50

Real: 1-GHz
Sim: 2 4-GHz

CPU time given
To virtual machineSimulation Rate = 8.0

10:00 10:15
Virtual time:

10:00 12:00 Real time:

Figure 4.8 Simulation Rate

To maintain the correct interaction between the network and the application, the network

simulator must be slowed down by the same simulation rate as all other simulation modules. For

example, if an application should spend 15 seconds on computation and then 5 seconds on

communicate, if we only slow down the computation by a factor 2, then the computation and

computation ratio becomes 6:1, instead of the real 3:1. Such distortion of the real scenarios can

introduce large inaccuracy in simulation results. Our approach avoids that problem.

There is also a good side-effect of slow down, it improves the accuracy of the whole

simulation; since it makes the delay between application and simulator much smaller when

compared to the simulated network delay.

To achieve scaled real-time simulation, the simulator must first decide the scale factor

(Scale) and then make progress according to this scale factor. The pseudo code of the simulation

control is listed in Figure 4.9.

 Tstart_wall_clock_time = wallclock();

While (simulation) {

 Wait until (scaled_virtual_time() >= simulation_time);

 Processes all events at the end of this time step

 Advance simulationtime to the next time step

}

Figure 4.9 Pseudo Code of the Scaled Real-time Simulation Control

51

This capability can be used to simulate future networks or processors which are much faster

connected to slow 100Mbit networks, future 100Gbit networks, and every speed in between.

For example, by slowing the simulated speed of computing resources, the effect of future high

speed transparent optical networks can be studied.

4.6 Summary

In this chapter, we introduced the MicroGrid approach to modeling the dynamic interaction

between applications, middleware, resources, and networks. To address the challenge of

modeling complex grid applications, Section 4.2 and Section 4.3 present possible solutions

based on live application interception and controlled direct execution. Section 4.4 focuses

mainly on how to achieve accurate and scalable online network simulation. Accuracy is

guaranteed through packet level detailed simulation. To address scalability issues, the basic

approach is to use a distributed conservative discrete event simulation engine to exploit the

parallelism available in the network simulation problem. Section 4.5 addresses the issue of

scaled real-time execution. This is the base of coordination between multiple simulation

modules. And the ability to control resource and network speeds in an online simulation (as

opposed to emulation) enables the MicroGrid to support arbitrary performance ratios between

elements in a simulation.

52

Chapter 5 System Design

The main capability of the MicroGrid is to allow grid experimenters to directly execute

their applications in a virtual grid environment. The MicroGrid can exploit either homogeneous

or heterogeneous physical resources. This chapter describes the MicroGrid 2.4.5

implementation, released in June 2004 and available from http://www-csag.ucsd.edu/. The

MicroGrid 2.4.5, the latest in a series of MicroGrid implementations which stretch back as far

as October 2000, supports Grid applications that use the Globus Toolkit 2 middleware

infrastructure.

This chapter is organized as follows. Section 5.1 provides an overview of the MicroGrid

system design. Implementation of the CPU controller for computation resource modeling is

introduced in Section 5.2. Following that, Section 5.3 presents the details of network modeling,

and Section 5.4 focuses on improving the scalability of network simulation using traffic based

load balance.

5.1 The MicroGrid Overview

We have designed and implemented a tool called the MicroGrid which enables accurate and

comprehensive study of the dynamic interaction of applications, middleware, resource, and

networks. The MicroGrid creates a virtual grid environment – accurately modeling networks,

resources, the information services (resource and network metadata). Thus, the MicroGrid

enables users, grid researchers, or grid operators to study arbitrary collections of resources and

networks. Further, the MicroGrid provides transparent virtualization, allowing the direct study

of complex applications or middleware whose internal dynamics are difficult to model

53

accurately. That is, real application software and middleware can be used unchanged and be

executed on arbitrary virtual grid structures. In short, the MicroGrid provides a virtual grid

infrastructure that enables scientific and systematic experimentation with dynamic resource

management techniques and adaptive applications by supporting controllable, repeatable,

observable experiments.

5.1.1 The MicroGrid System View

Application
WrapSocket

Application
WrapSocket

Application
WrapSocket

Application
WrapSocket

CPU
Controller

Application
WrapSocket

Application
WrapSocket

Virtual
Machine

CPU
Controller

….

Physical
Host

Virtual
Machine

Online Network
Simulator

Application
WrapSocket
Application
WrapSocket

Application
WrapSocket

Application
WrapSocket

CPU
Controller

Virtual
Machine

Cluster

Figure 5.1 the MicroGrid System View

The MicroGrid provides an online simulation of virtual grid environments transparently,

allowing applications to be run unchanged. At launch, the MicroGrid reads a virtual grid

configuration, and then builds corresponding simulation objects so as to provide the experience

of running on a virtual grid. These simulation objects implement models of network elements,

compute resources, or grid information services. The MicroGrid can implement the virtual grid

simulation using essentially any physical resources, including homogeneous clusters,

heterogeneous grid resources, or even on a single computer. Usually the network simulator uses

a set of cluster nodes and each node is in charge of simulating a section of the virtual network.

54

The application processes run in different virtual machines which can be hosted by another set

of physical resources.

High speed resource simulation is achieved by direct execution of applications and

middleware on virtual machines. A physical machine can host a few virtual machines and uses a

CPU scheduler to control the speed and capacity of the virtual machine (Figure 5.1). Direct

execution allows experiments to proceed at near real-time. The MicroGrid uses a wrapper

library which automatically intercepts library functions in user applications, thereby creating

hooks for the virtual grid simulation system. Thus MicroGrid users can run any application on

the MicroGrid by simply re-linking the applications to the “wrapper” libraries; neither changes

to the application and middleware source codes, nor understanding of them are needed.

The network traffic from the applications is redirected to an online network simulator by the

wrapper libraries. Data movement is accurately simulated by the network simulator and

delivered back to the application at the appropriate time to reflect ‘actual’ network behavior.

5.1.2 The MicroGrid User View

Cluster

Application
Virtual Grid

User

Mapping

Figure 5.2 The MicroGrid User View

To use the MicroGrid, a user must:

1) Specify a set of virtual resources, including network connectivity and protocols.

a. Network topology (Nodes, including routers and hosts and Network links, link

capacity and link latency)

55

b. Network protocol (Transport protocols -- TCP or UDP and Routing protocols –

OSPF, BGP)

c. Node properties related to communication protocols (e.g. TCP buffer, send window,

receive window, segment size, etc.)

d. Compute (relative CPU speed)

e. Compute Node Connections into the network

2) Specify a set of physical resources to be used for the compute and online network

simulation, which in turn are used to control the deployment of virtual resources to physical

resources.

3) Submit a Grid application as a job on the virtual grid, just like on a real Grid environment

4) Observe the execution of the application, and collect results and performance data

5.2 CPU Controller

CPU Controller

Grid Application

Wrap Socket

Process Table

/proc

Virtual Machine 1

Virtual Machine 2

Virtual Machine 3

Grid Application
Wrap Socket

SigStop/SigCont

Figure 5.3 CPU Controller

As mentioned in Section 4.2 the MicroGrid uses one CPU controller on each physical host

to monitor the per process resource utilization of the processes on each virtual machine, and

preemptively schedules them using SIGSTOP and SIGCONT signals (Figure 5.3). Here we

56

provide more implementation details on how to guarantee accurate CPU quotas for every virtual

machine in the controller.

5.2.1 The Challenge

Although the idea of the CPU controller appears simple, there are two factors that make it

complex. First, the POSIX.5 thread scheduling mechanism used in Linux is not a real time

scheduler. Specifically, it has a 10 milliseconds scheduling unit; that is, when ever a process is

scheduled to run, it can use up 10 milliseconds. Second, an application can be a mix of

computation and communication; its running time depends on both the CPU speed and the

network speed. Ideally, the CPU controller and the network simulator can collaborate to make

for a more accurate simulation. However, this would make both the network simulator and the

controller more complex. For simplicity and scalability, it is desired that they operate

independently, while the CPU controller can make scheduling decisions based on the

observations of how much CPU time the application has used.

A naïve implementation, which was used in the first release of the MicroGrid toolkit,

demonstrates the effect of these two factors. The original scheduler starts/stops application

processes periodically. The period is calculated from the CPU speed of a virtual machine and

the number of processes loaded on the virtual machine. For example, if the scheduler is to

control a virtual machine which has allocated 25% of real CPU on which two processes are

running, it will assign each process 10 milliseconds every 80 milliseconds.

This mechanism works fine if the application is computation intensive, but has the

following weakness:

First, it is not suitable for communication intensive applications, which use little CPU

resource and spend most of their time waiting for network messages. If the simulation process is

stopped by the controller just before the arrival of network data, it is not able to respond until 70

57

milliseconds later. This 70 milliseconds latency is purely a simulation artifact and hurts the

simulation accuracy tremendously. Similarly, if a virtual machine has both communication-

intensive and computation-intensive processes, the computation process can easily use up all

allocated CPU slots and leave the communication process hungry. This will also introduce large

communication delay and, potentially, skew message inter-arrival time.

Second, it allocates CPU resource uniformly to every process on a virtual machine, which is

unlikely to happen in the real world. If some processes are waiting for disk I/O or network data,

they will not use much CPU time, while other computation-intensive processes should be able

to take their quotas.

5.2.2 CPU Controller with Sliding Window

From the example above, we can see two key issues for good CPU scheduling. First, to

prevent unwanted communication delay, an application process should always be ready to run if

it has not used up its available CPU slots. Second, a computation-intensive process should be

able to use all of the CPU quota allocated to its virtual machine; other given processes on the

same virtual machine do not take their own slices.

58

 decides the sliding window size for every virtual machine

while (simulation is running) {

 polls the CPU usage information from the /proc

 for (every virtual machine) {

 calculates the CPU usage percentage during recent sliding window

 if exceeds the CPU quota, then

 stops all processes on it

 }//end of for

sleeps until next scheduling point

} //end of while

Figure 5.4 Slide Window CPU Controller

To address these two issues, we design the sliding window scheduling mechanism. Instead

of proactively starting/stopping processes periodically, the controller lets the OS schedule all

processes on a given virtual machine freely, and simply monitors their CPU usage in the

background. The scheduler will only stop processes on a virtual machine when they have used

up all the CPU time allocated to them. If the virtual machine has been idle for a while, it can

accumulate some “credits” that allow for quick response following network data arrival or I/O

event completion. To prevent a machine from accumulating too many credits, the controller

uses a sliding window algorithm to track its recent CPU usage. The pseudo code of the CPU

controller is presented in Figure 5.4.

Because Linux schedules processes in 10ms units, called “jiffy”s, the controller uses a

window size measured in the units of jiffies. In order to minimize simulation error, we try to

keep the sliding window as small as possible. Since communication latency may be masked by

scheduling granularity, we determine the minimal sliding window size as follows:

59

Suppose E is the design accuracy error and p is the scaled virtual machine speed (fraction of

physical CPU), the sliding window size (w jiffies), and the available jiffies in a sliding window

n should satisfy:

 w = round(n/p) and | 1 – n/(p*w) | < E

For every virtual machine with a given E and p, we can first find the smallest n that satisfies

the

| 1 – (n/p)/round(n/p) | < E

Then we can calculate the sliding window size w, which is the smallest sliding window to

satisfy the accuracy error E (set to 5% in our implementation). For example, if we have a 1GHz

machine, and we want to simulate a 600MHz machine with simulation rate 2, then this virtual

machine should take p=(600/1000)/2 = 30% CPU of this physical machine. So we need to find

the smallest n that satisfies:

 | 1 – (10n/3) / round(10n/3) | < 0.05

In practice, since n is usually a small integer, we can just try 1,2,3 ,… in sequence, and stop

at the first number that satisfy the inequation above. Here we can get n equal to 2, and then set

the sliding window size w to round(n/p) = 7.

5.2.3 Discussion

The sliding window mechanism allows simulation of large numbers of machines (100’s to

thousands) on a small number of machines. Further, since each virtual machine has its own

window size, grids with extremes of heterogeneous performance from slow to fast machines can

be modeled accurately on the same physical machine.

60

Stopped by OS

Stopped by
Network I/O

Wakeup from
Network I/O

Wakeup by OS

Slide Window Size

Process A
λ=1/2

Process B
λ=1/2

: Process In Execution : Process Stopped

Figure 5.5 Possible Inaccuracy from Large Sliding Window Size

However, reducing E often leads to larger sliding window size, which may lead to

simulation error for applications which have mixed computation and communication. The major

reason for this is that the CPU controller has no idea whether a waiting process is waiting for

network delay, or is just scheduled out by the operating system. For example, Process A and

Process B are supposed to use half of the real CPU on two physical machines. Both of them

stop after using ¼ of the sliding window size time, one due to the network I/O and the other due

to the host OS scheduling. At the ¾ sliding window point, process B is re-scheduled to run by

the OS, and the CPU controller should let it use up the rest of the sliding window. Process A is

also woken-up by the completion of network I/O at the same time, and it should be stopped by

the CPU controller, since it should only use ¼ of the real CPU time due. Currently the CPU

controller cannot distinguish these two cases, and it will always grant another ¼ sliding window

time to Process A.

So under some conditions, we may still have large inaccuracies: such is the case when an

application has mixed computation and communication with some special structures, and the

sliding window size is large in comparison to communication latency. As we will show in our

validation experiments, with reasonable design accuracy error E, this situation rarely happens

and has little effect on overall application performance.

61

5.3 Scaled Real-time Online Network Simulation

Network modeling is achieved by MaSSF. MaSSF (pronounced “massive”) is a scalable

packet-level network simulator that supports direct execution of unmodified applications.

MaSSF consists of four parts.

Simulation Engine

Network Modeling

Virtual Grid

I/O
Thread
Pool

Input Queue

Output Queue

Agent Nodes

Grid Application
Wrap Socket

Virtual/Real IP
Mapping Server

Live Traffic

SSF API

Figure 5.6 The MaSSF Scalable Network Simulation System

1) Simulation Engine: MaSSF uses a distributed simulation engine based on DaSSF [56].

It utilizes an MPI-connected cluster system to achieve scalable performance. The original

simulation engine, executable only in pure simulation mode, has been modified to operate in a

scaled real-time mode (as discussed in Section 2.3). This simulator can run in a scaled-down

mode when the simulated system is too large to be executed in real time on the available

hardware. With the global coordination of the MicroGrid, this feature provides extreme

flexibility to accurately simulate a wide range of networks accurately.

2) Network Modeling: MaSSF provides necessary protocol modules for detailed network

modeling, such as IP, TCP/UDP, OSPF, and BGP4. We have built simplified implementations

of these protocols which maintain their behavior characteristics. We also use a network

configuration interface similar to a popular Java network simulator implementation, SSFNet[57],

for user convenience.

62

3) Online Simulation Capability: To support simulation of traffic from live applications,

we employ an Agent module which accepts and dispatches live traffic from the application

wrapper to the online network simulation. Traffic is also delivered to application through the

Agent module.

4) Live Traffic Interception: Application processes use a wrapper library called

WrapSocket to intercept live network streams at the socket level. The WrapSocket then talks to

the Agent module to redirect traffic into the network simulator and vice versa. WrapSocket can

be either statically or dynamically linked to application processes and requires no application

modification.

These components and their relationship are illustrated in Figure 5.6. In the following

sections we will present a more detailed description and rationale for our design choices.

5.3.1 Network Modeling

MaSSF’s goal is to enable detailed modeling and simulation of Internet protocols and

networks. It uses object-oriented simulation components to construct a network, setup network

protocols running on various hosts and routers, and create/accept traffic to be simulated. Traffic

can be created using traffic generation modules or can be imported from live applications.

Network traffic is simulated at the IP packet level and every network packet movement is

represented by a simulation event. MaSSF models the hop by hop movement of IP packets

through the network, including link transfer delay, queuing delay in router queues, and packet

drop. The simulation engine has a scaled real-time scheduler that delivers events at the exact

time specified by the event timestamp. In this way, we can capture link congestion and network

dynamics in the real world.

63

5.3.1.1. Network Protocol Stack

Like the Click Modular Router[58] and SSFNet[57], MaSSF provides a batch of protocols,

such as IP, TCP, UDP, OSPF, and BGP, and some network elements, like hosts, routers, links,

and switches, that can be used to construct a network. For example, a host can be configured

with IP, TCP, and Socket protocols, plus an httpClient traffic generation module or a live traffic

Agent module. A router can be configured with IP, TCP, OSPF modules as an internal

Autonomous System (AS) router and it can also be configured with IP, TCP, BGP modules to

be used as a BGP router. With these basic components provided by MaSSF, users can construct

a network entity using any reasonable module combination. Moreover, users can also write

their own protocol modules for new applications or network protocols.

httpServer Agent

socketMaster

tcpSession
Master

udpSession
Master

IP

NIC

Connection to other host or router

Figure 5.7 Protocol Stack for a Host with httpServer and Agent

All protocols running on a host or router are constructed as a protocol stack with well-

defined interfaces to facilitate the data movement along the stack. Figure 5.7 illustrates the

major network elements and protocol sessions that are used in a host model. This host is

equipped with one network interface card (NIC), which is connected to another host or router.

64

The host has an httpServer application running, which uses a socket interface, just like in a real

operating system, to communicate with the TCP protocol session masters at the transport layer.

A TCP or UDP session is created when a request arrives from the application, and is torn down

when the session is finished. An IP layer is required to manage packet sending, receiving, and

forwarding by the NIC. This host also has an Agent protocol module, which means it can accept

real traffic from live applications. Figure 5.8 is a router equipped with two NICs, with both

BGP and OSPF routing protocols.

OSPF BGP4

socketMaster

tcpSession
Master

IP

NIC

Connection to other host or router

NIC

Figure 5.8 Protocol Stack for a Router Running BGP and OSPF

5.3.1.2. Network Topology and Configuration

The first step in network simulation is to provide the topology and configuration of the

network to be simulated. In MaSSF, the input network is described by the Domain Modeling

Language (DML). MaSSF models are self-configuring - that is, each MaSSF class instance can

autonomously configure itself from a configuration file in DML format [59].

65

DML has a simple syntax: it is a list of attributes. The key of the attribute is an identity and

the value of the attribute can be a number, a string, or another attribute list enclosed in brackets.

DML is a recursively defined list of key-values. Logically, a DML file can be viewed as a tree.

The root and all internal nodes represent a list of attributes and all leaf nodes represent attributes

with simple values. All nodes can be identified by a key path starting from the root, like the

hierarchical Java module name.

An input DML file specifies the network topologies, including network entities (host/router)

and links between entities. The link latency and bandwidth are also specified in the DML file.

For each entity, the user can also decide the protocol stack. Figure 5.9 and Figure 5.10 are

example DMLs corresponding to the entities in Figure 5.7 and Figure 5.8 respectively. Figure

 5.11 is a simple network with 2 hosts and 1 router. The Net, host, router, link, attach, interface,

and graph are reserved attribute keys for network specification. The graph attribute represents

the protocol stack installed on an entity, and the link attribute is used to represent a network

connection. The attach attributes are the NICs connected to a link.

 host [id 0
 route [dest default interface 0]
 interface [id 0 bitrate 100000000 latency 0.0001]
 graph [

ProtocolSession [name agent use Agent]
ProtocolSession [name httpserver use httpServer]
ProtocolSession [name socket use socketMaster]
ProtocolSession [name tcp use tcpSessionMaster]
ProtocolSession [name ip use IP]

]
]

Figure 5.9 A Host with Agent and httpServer

66

 router [id 1
 interface [id 0 bitrate 100000000 latency 0.0001]
 interface [id 1 bitrate 100000000 latency 0.0001]
 graph [

ProtocolSession [name bgp use BGP4]
ProtocolSession [name ospf use sOSPF]
ProtocolSession [name socket use socketMaster]
ProtocolSession [name tcp use tcpSessionMaster]
ProtocolSession [name ip use IP]

]
]

Figure 5.10 A Router with OSPF and BGP Routing Protocols

Net [id 0
 host [id 0 interface [id 0]
 host [id 1 interface [id 0]

router [id 2
 interface [id 0]
 interface [id 1]
]
link [attach 0(0) attach 1(0) attach 2(1)]

]

Figure 5.11 A Simplified DML for a Network with 2 Hosts and 1 Router

The DML file has all information regarding the network. This information is parsed and

stored in a database by MaSSF at initialization phase. MaSSF uses this database to create the

virtual hosts and routers, setup network connections, and build the forwarding table. After

initialization, the DML file and the database are no longer necessary, all simulated network

elements work independently, just like in the real world network.

5.3.1.3. Addressing in DML

As in the DML examples, every host or router is identified with an id attribute and every

NIC can also be identified an interface id attribute. The link attribute is used to represent a

network connection, and it uses the NIC identities to represent which NICs are connected to this

link. For example, the

67

link [attach 0(0) attach 1(0) attach 2(1)]

represents that there is a switch connecting host 0, host 1, and router 2, using interface 0, 0,

and 1 respectively.

The Net is also identified by the id. MaSSF supports hierarchical networks with nested Net

attributes. And each Net attribute can have multiple sub Net attributes, identified with different

id attributes. The Net, router, host, and interfaces defined in such a manner can be uniquely

addressed using the NHI scheme, where NHI represents the Network-Host-Interface. The

network address of Net attributes is formed by concatenating the id of the network definition at

each level starting from the DML root, separated by colons. Similarly, the NHI address of a host

or router is the encompassing Net addressing concatenated with the id of the host, separated by

colons. The NHI address of a NIC is the concatenation of Net and host address, followed by the

NIC id, enclosed in parentheses. For example, an NHI of 4:2:12(3) represents the third NIC of

host 12 in the network 4:2.

The NHI scheme can be used to globally address any host, router, or interface, uniquely.

However, when used in a DML file, the network address essentially starts from the root of the

DML Net; typically a local address is sufficient. For example, when we define a link in Net 4,

only the local address is used

 Link [attach 2:12(3) …]

In this way, a sub-network can be defined without knowing the upper-level network, and a

single definition can be used multiple times by different networks. This makes the DML quite

flexible when defining a hierarchical network.

NHI addressing is only used inside the DML file, and external users require IP addresses.

The user can specify an IP address for every NIC of the hosts and routers in the DML file or

MaSSF can automatically assign IP addresses according to CIDR address mechanism [60].

68

After assigning an IP address, the forwarding table will be setup automatically, according to the

configured routing protocols.

5.3.1.4. Routing in MaSSF

As in a real world router, packet forwarding in the MaSSF router is decided by a local

forwarding table, which is calculated by the routing protocols. We have implemented the OSPF

protocol for intra-domain routing and BGP4 protocol for inter-domain routing. As we already

see in the examples, these protocols can be installed in the router protocol stack.

Two versions of OSPF are implemented in MaSSF. The first is the static OSPF, which only

calculates the shortest-path routing of an AS at the beginning of simulation and it will not

respond to network changes during the simulation. However, it can still accept dynamic routing

information from BGP protocols. The second fully implements the specification of OSPFv2 [61]

and recalculates the routing table dynamically when experiencing router failure, link failure, or

heavy traffic congestion. Compared to the dynamic version, static OSPF is much simpler, and

requires less memory. Since all routers in an AS has the same view of the network, we can just

keep a single network database in an AS, and calculate forwarding tables for every router

together. The network topology database can be released after initialization. Dynamic OSPF, on

the other hand, has to keep the AS network topology information and calculate the forwarding

table by itself. In practice, we only use the static OSPF for large scale simulation, and use the

dynamic OSPF only when we really care about the routing dynamic inside an AS.

The BGP protocol in MaSSF is based on the SSF.OS.BGP4 model from SSFNet. The focus

of porting the BGP4 model from SSFNet to MaSSF, is not on to develop novel BGP simulation

technology, instead, the focus is to exploit the scalability offered by the MaSSF simulation

framework So, functionally the MaSSF implementation is fully compliant with the BGP-4

specification in the RFC1771[62], just like the original SSFNet BGP model. And it is also fully

69

validated with the test suits in SSFNet, covering functionality such as basic peering session

maintenance, route advertisement and withdrawal, route selection, route reflection, and internal

BGP.

One major consideration in our BGP implementation is the reduction of memory

consumption for better scalability. For a large network simulation, one big memory consumer is

the BGP routing table, since it grows exponentially with the number of ASes. To alleviate this

memory problem, we fully reuse routing entries among the three parts of BGP Routing

Information Base (RIB) [63]: Adj-RIBs-In, Loc-RIB, and Adj-RIBs-Out . Unlike the Java

automatic memory management of SSFNet, MaSSF manages all objects using reference

counters which reduce the memory consumption by 60%. The other big memory consumer is

the local forwarding table. In MaSSF, the BGP routers can work with OSPF routers insider an

AS and only broadcast default routing to external networks, instead of the whole routing table in

the BGP router. This is can greatly reduce the memory consumption and computation overhead

for a large AS with hundreds of internal routers. Of course the user can disable this feature if

they want to manually control the routing policy inside the AS.

5.3.2 Online Network Simulation

Online network simulation is to enhance traditional network simulation with supports for

direct execution of applications. Two major issues are discussed here, one is how to intercept

live application traffic and the other is how to inject the traffic to the traditional network

simulation.

5.3.2.1. Socket Level Interception

In order is to support direct execution of real applications in MaSSF, we need to intercept

live traffic from applications and present it to the network simulator. It can be achieved either at

the socket level by intercepting the send(), recv() network related system calls or at the IP

70

packet level by manipulating the IP packet directly. The difference between these two

approaches is whether or not the operating system’s TCP stack (see Figure 5.12) is used in the

data movement path. The advantage of the second approach is that it does not model the TCP

stack, leading to a much simpler implementation. However, using the original TCP stack

requires running the simulation in real time, since the OS TCP stack observes the real packet

RTT (round trip time) and adjusts its send rate according the RTT it observed. This is a big

constraint, since in many situations the physical resources are not fast enough to achieve real

time simulation. So MaSSF takes the first approach, intercepting the live traffic at socket level

for scaled-real time simulation.

Application2

send() recv()

Simulated Network

TCP Stack

TCP Stack

Application1

IP Packet IP Packet

Figure 5.12 Traffic Flow in a Real Operating System

As shown in Figure 5.13, MaSSF intercepts all network related system calls using a library

called WrapSocket, which can be either statically or dynamically linked to application programs.

Every virtual host has a corresponding Agent inside the simulator, and WrapSocket sends the

Agent a logical reference for each intercepted network operation. A detailed TCP stack is

implemented inside MaSSF and packet movement and timing are accurately simulated. Only

packet references are routed in the simulated network, while the real data stays in WrapSocket

and is delivered directly to the destination processes’ WrapSocket. There are no extra data

copies, and minimal real network traffic is incurred. When all required data arrive at the

71

destination Agent, it allows WrapSocket to successfully return calls to recv(). At this point, we

expect that all real data is already waiting in WrapSocket, since it is transferred directly through

the fast local network. The application then returns from the call to recv() with the real data.

Application2
send() recv()

Real Data
Wrap Socket

Wrap Socket

Agent Agent
TCP Stack

TCP Stack

Simulated Network

TCP Stack

TCP Stack

Application1

Figure 5.13 Traffic Flow in MaSSF

In our approach, all network behaviors (including TCP sliding window management, link

congestion, and packet drop, etc.) are precisely modeled inside the simulator, and the only

source of distortion is the delay for transferring a logical reference from WrapSocket to the

Agent. Since this is a small amount of data (~60 bytes), moving across a fast local link, its

impact on the simulation of wide-area network delay is negligible.

5.3.2.2. Efficient Request Handling

Every network operation is translated into a request to the simulator and after processing the

result will be sent back to the wrapper. Since the delay between the wrapper and the Agent

module is not modeled by the simulator, it must be handled as fast as possible. And the most

important factor is that no pending request blocks subsequent requests even if its own semantics

describe it as a blocking operation; these operation include blocking connect, recv, and send

operation. The reason for this is that a simulation engine node may support many virtual hosts,

72

with many application processes connected to it. If the request handler blocks on one request, it

cannot handle requests from other processes or from other virtual machines.

Based on these considerations, the simulation module is implemented with the following

features.

1) Non-blocking Request Handling: All event handling must be non-blocking. For those

blocking operations, the block happens only in the wrapper; all operation within the simulator is

non-blocking. To achieve this, we exploit callback mechanisms in the simulator, implemented

through the Continuation construct.

Continuation {

 int success();

 int failure(int err_no);

};

For every blocking request, a continuation object is created and registered in the simulator.

For example, a blocking read operation can create and register a continuation on the

corresponding TCP session. When new data arrives, the simulator will check whether any

pending read continuation is registered and whether it is satisfied, if so, the success() function

will be called and the read result is sent back to the wrapper.

2) Event-based Request Dispatch: Every simulation node has a thread pool to accept

requests. Requests form the wrapper are first put into an event queue, and then handled by a

thread pool in FIFO model. The event handling is non-blocking, so only a small number of

threads are needed to handle a large number of clients (application processes).

3) Optimization for Select and Poll: All function calls are handled in a RPC-like approach,

except the select and poll calls. These calls are different. They have timeout mechanism with

the timeout values can be quite small and called very frequently. If they are implemented in a

straight forward fashion, that is, one request for per call and timeout in the simulator, the

73

overhead for some applications could be so large that it would affect the accuracy of the

simulation. Hence, these calls are handled separately. We do not send out a request for every

call, instead, we only send out a request when it is different from the last request, such as when

selecting on different socket sets. Timeouts only happen in the wrapper, and the simulator is not

involved. An old selection request will register a continuation, and it will either result in success

or be overwritten by a new selection on that socket. An invalid selection result must be sent

back to the wrapper when that selection has timeout. The wrapper can use sequence numbers to

distinguish invalid results.

Request Throughput

0

10000

20000

30000

40000

50000

60000

70000

1 2 4 6 8 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Concurrent Clients

Th
ro

ug
hp

ut
 (r

eq
/s

ec
on

d)

Figure 5.14 Request Throughput for a Single Simulation Engine

Figure 5.14 shows the request throughput of a single simulation engine node, versus

concurrent number of clients. For a single client, the throughput is about 2200 requests per

second, and the total throughput can reach 65K requests per second. This throughput seems

small, but it can support quite a fast network, since every request can correspond to a send

operation, which can be much larger than a network packet. Also, all simulation engine nodes

provide fully parallelized on requests handling, we can increase simulation engine nodes

numbers if necessary.

74

Figure 5.15 shows the request delay, versus the concurrent client number. The minimal

request delay is about 0.47 milliseconds, which is quite small, when considering the wide area

network delay (more than 10 milliseconds) plus the possible slowdown rate. The delay increases

slowly until it reaches the throughput bottleneck with 60 full speed clients.

Request Latency

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035
1 2 4 6 8 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Concurrent Clients

Le
te

nc
y

(s
ec

on
d)

Figure 5.15 Request Latency of a Single Simulation Engine Node

5.4 Traffic Based Load Balance for Scalable Simulation

In this section, we discuss the details of our automatic load balancing for scalable network

simulation.

5.4.1 Elements of Network Mapping Problem

To achieve scalable performance, MaSSF uses a distributed simulation engine running on a

cluster. Given a network topology and available cluster nodes, the MaSSF partitions the virtual

network to multiple blocks, assigns each block to a cluster node, and simulates in parallel, as

shown in Figure 5.16. Every cluster node runs a discrete event simulation engine and events are

exchanged among cluster nodes. To maintain the simulation accuracy, these cluster nodes also

need to synchronize periodically.

75

Scalable
Cluster System

Router

Host

Router

Router

Traffic
Load

Figure 5.16 Mapping Routers to Physical Resources

For large simulations, the network mapping cannot be done manually or casually. Instead,

the mapping is a critical and demanding challenge, since we need to achieve load balance across

all cluster nodes. This is difficult because the workload on each physical node varies greatly,

depending both on the virtual mapping and network traffic in that subset of virtual network

(Figure 5.17). Furthermore, two more optimization goals should be considered. One is to

maximize link latency across partitions to reduce the frequency of synchronization among

simulation engines and maximize concurrency, a critical element of scalability for large scale

simulation. This feature is an attribute of our MaSSF system and all other network simulators

based on conservative discrete event simulation engines. The other optimization goal is to

minimize the communication of simulation events between simulation engine nodes. It is

expensive to transfer a simulation event across physical nodes both in terms of computation

overhead and communication latency. Also, the physical network of the simulation engine

nodes is often a performance bottleneck for the whole simulation. Hence, it is important to

minimize this communication.

The problem above is called the network mapping problem. To achieve the optimal load

balance even with known traffic is a NP-Hard problem[55]. However, in practice, a network

mapping problem can be naturally modeled as a graph partitioning problem and solved with the

classical graph partitioning algorithms.

76

Figure 5.17 Load Variation over the Lifetime of Simulation

5.4.2 Modeling Network Mapping as a Graph Partitioning

Problem

Given an input graph G = (V, E) with weighted vertices and edges, typical graph

partitioning algorithms can partition it into k parts such that, each part has roughly the same

number of vertex weight and the edge-cut (the number of edges) that straddles partitions is

minimized. By setting the vertex and edge weights appropriately, mapping a simulated network

to a set of physical simulation resources can be modeled as a graph partitioning problem and

solved using a generic graph partitioning algorithm.

As a well studied problem, we expect that any high quality graph partitioning package (in

this case METIS[64]) should produce results comparable to other graph packages. So our

challenge is how to apply the graph partitioning algorithm in METIS to solve the mapping

problem by defining the suitable input graph G, constraint conditions, and optimization

objectives for the graph partitioning algorithm. Our choices are discussed in the following

subsections.

77

5.4.2.1. Input Graph

The input graph G is defined by two categories of parameters: network structure and traffic

information. The network structure includes detailed network topology, link latency, and link

bandwidth. In MaSSF, this information is stored in the network description file and can be

easily translated to a vertex and adjacent edge graph. Network traffic information is used to

define edge weights in the graph, and it may also affect vertex weights. In general, network

traffic information includes background traffic and foreground applications traffic, derived from

trace, model, or even live applications. How we approximate and model the expected traffic for

the simulation is the distinguishing key characteristic of our three different load balance

approaches. We will further focus on how to get that information in Section 5.4.3.

5.4.2.2. Constraints

In a graph partitioning problem, the constraint is the vertex weight to be balanced among

multiple vertices. In the network mapping problem, the vertex weight can be defined as

weighted sum of computation and memory requirement on each simulation engine node. In the

MaSSF implementation, the computation requirement mainly comes from the logic for packet

processing, which depends on network connection, routes, and traffic intensity. It is calculated

based on the maximal bipartition flow of all traffic flowing through a network node. The

memory requirement is mainly based on the routing table size. The routing table size is in the

order of O(n2), where n is the number of routers in an AS (Autonomous System). We also use

multiple constraints to balance different kinds of vertex weights together.

5.4.2.3. Objectives

In a graph partitioning problem, the objective is the edge-cut to be minimized. In the

network mapping problem, the optimization can use two objectives, which means two different

78

ways to weight the edges. The first one is to maximize link latency across partitions. This can

reduce the frequency of synchronization among simulation engines and maximize concurrency

in the simulation, which is very important for scalability for large scale simulation. This feature

is an attribute of our MaSSF system and all other network simulators based on conservative

discrete event simulation engines.

The second objective is to minimize the communication of simulation events across

simulation engine nodes, since it is expensive to transfer a simulation event across physical

nodes both in terms of computation overhead and communication latency. Also, the physical

network of the simulation engine nodes is often a performance bottleneck for the whole

simulation; hence, it is important to minimize this communication. With detailed traffic

information, we can estimate the number of simulation events on each single link and use it to

calculate the edge weight. How to get such traffic information is the major topic of Section

5.4.3.

5.4.2.4. Multi-Objective Graph Partitioning

In last subsection, two objectives are described. Both of them are important and sometimes

in opposition.

 1) Apply the single objective algorithm for maximal link latency across partitions,

get the optimization edge-cut Clatency.

2) Apply the single objective algorithm for minimal network traffic across

partitions, get the optimization edge-cut Cbandwidth.

3) Assign each edge weight to

bandwidth

bandwidth

latency

latency

C
w

C
w

conbined ppw)1(−+=

where p is the user controllable weight of the latency objective.

4) Apply the single objective algorithm with the new normalized edge weights.

Figure 5.18 The Multi-Objective Graph Partitioning Algorithm

79

The challenge is to figure out how to set edge weights to represent the requirement of both

objectives, and still provide the user predictable control on tradeoff. A simple combination-

based approach (e.g. simply add two weights to a single weight) does not make sense.

Applying the algorithm presented in [42], we can combine two dissimilar weights in a

predictable way and use the available single objective METIS partitioning package. This

algorithm is based on the intuitive notion of what constitutes a good multi-objective partition.

That is, a good solution should be close to the optimization solution for each single objective.

Applying this approach on our network mapping problem, we get the algorithm in Figure 5.18:

Network
Structure

Partitioned
Network

Traffic
Information

Graph
Preparation

G Constraints
Objectives

Graph
Partitioning
Algorithms

Figure 5.19 Process of Network Mapping

In summary, the mapping process can be modeled as shown in Figure 5.19. First, it takes

the network structure and traffic information as input, creates a graph G, and builds objectives

and constraints of graph partitioning algorithms. Then it applies partitioning algorithms to get

the partitioned network. The partitioned network incapacitates the mapping of emulated

network nodes to physical resources. We may have different abstraction of network mapping

problems and use different constraints and objectives in the graph partitioning algorithm;

however, we believe what we present above is straightforward and should have reasonable

80

results with small overhead. The problem left is how to collect and use the traffic information,

which will be discussed in the following section.

5.4.3 Traffic Based Network Mapping

Three different approaches are explored for network mapping. These approaches vary in

how network topology, background traffic, and application traffic are represented and used in

the partition. The ability to predict the simulation workload (i.e. network traffic) accurately

enables better partitioning and therefore better load balance. However, there are tradeoffs

between the specificity of the information used and the generality of the partition produced.

5.4.3.1. Network Topology-Based Mapping (TOP)

Our first approach only considers the simulated network topology, link bandwidth, and

latency, in which each virtual node is weighted with the total bandwidth in and out of it. The

optimization objective is to maximize the link latency between simulation engine nodes, as

discussed in Section 5.4.1. This maximizes decoupling, supporting efficient parallel simulation.

This basic approach is simple and fast, and represented the state of art as we began.

Therefore, it forms a performance baseline for our experiments. It should work well for well-

engineered networks with evenly distributed traffic. In such networks, the link bandwidth

usually determines the routes that are placed over the links, and since networks are typically

engineered to match the demand, link bandwidth is closely related to real traffic. For example,

this model is expected to be effective when we want to study the web traffic on Internet, which

is composed of lots of small web browsing flows.

5.4.3.2. Application Placement-Based Mapping (PLACE)

With precise traffic information, we can do a better mapping. The second approach is based

on the observation that simulated network traffic typically consists of a background and a

81

foreground load. Foreground traffic is created by the target application that the user wants to

study, and background traffic is used to provide realistic network conditions. Both traffic loads

are estimated separately, and then combined to predicate the aggregated traffic data for better

network mapping. We call this approach PLACE.

The background traffic is generated using simple traffic models based on the network

topology, and can be explicitly controlled by the user of the network simulator. In this case, it

is reasonable that all traffic generators can provide some prediction of their generated traffic

load, for example, specifying the average traffic bandwidth between two endpoints. Because the

background traffic represents an aggregate of traffic, such a gross characterization can be

reasonably accurate.

Due to the nature of configuring application, the foreground load is typically the live traffic

from a small set of application programs. Unlike background traffic prediction, it is difficult for

users to predict the traffic of the real application. First, the live traffic has complex dynamic

behavior that is hard to model (that is why we need a network emulator to study it). Second,

users may not have the required knowledge to describe this information (lacking either

application knowledge or the computer systems knowledge). As an approximation, we

determine the traffic injection points of the application, where its processes attach to the

simulated network, assuming that the application fully utilizes the network link at each injection

point and every node talks to all other nodes with evenly distributed bandwidth. While this

approximation may seem coarse at first glance, it is acceptable when considering that most

target applications in simulation are complex and network intensive.

With the source/destination pairs of all traffic flows, the aggregated traffic on each link can

be computed by summing the contribution from each flow. To identify the routes used in the

simulated network, we instantiate the simulated network and detect the actual routes used

(based on dynamically generated routing tables and routing protocols). To get the routing

82

information, we implement the ICMP protocol inside MaSSF, and use the real Linux traceroute

tool to discovery the routing paths between each source-destination pair. To reduce the number

of traceroute execution required, we could use one representative endpoint for each sub-

network and only discover the route paths between those sub-network representatives.

With this predicted traffic information, the approach in Section 5.4.3.1 can be improved by

recalculating vertex/edge weights. This extra information also enables another objective, which

is to minimize the traffic across partitions. In the approach, the multi-objective graph

partitioning algorithm described in Section 5.4.2.4 is used.

5.4.3.3. Profile-Based Mapping (PROFILE)

The third approach uses profiling techniques to obtain traffic information automatically

from simulation experiments. The profiles are then used to estimate future network use, and to

improve the network mapping. Typically this involves an initial simulation experiment using an

initial partition and traffic monitoring. The simulation yields detailed traffic information and the

network can be repartitioned based on this information.

The critical challenge for this approach is the efficient collection and representation of

traffic information during profiling, and the use of this information to repartition the network. In

MaSSF, we implement the Cisco NetFlow-like [65] function on each simulated router. This

functionality is used to record every traffic flow on each router to a local file. The dump files

record the average bandwidth and duration of every flow on every router. Parsing the dump files

allows computation of the aggregated traffic on every router and link in the network. By tuning

the granularity of the NetFlow, we can get detailed network traffic information with small

overhead.

In our implementation, the real network traffic data does not actually travel through the

simulator; only packet references are processed by it. Instead of using the real network

83

bandwidth (MB/s) as the bandwidth measurement, the number of packets in a flow is used,

since the real load in the simulator depends on the number of packets it processes. The live

traffic injection overhead is also measured by the number of requests coming from the

application.

With much more accurate traffic information about the virtual network from the profile data,

the same multi-objective graph partitioning algorithm described in Section 5.3.2.4 is applied to

get better load balance.

5.4.3.4. Preliminary Results

We implemented these three partition algorithms in the MaSSF and applied them to the

network simulations, with different network topologies and different applications. The network

topologies are in range of 60-300 hosts and routers, simulated with less than 10 physical nodes

(Table 5.1). These studies show that exploiting static topology and application placement

information can achieve reasonable load balance, but a profile-based approach further improves

load balance for even large scale network simulation. In our experiments, PROFILE improves

load balance by 50% to 66% and simulation time is reduced up to 50% compared to purely

static topology-based approaches. More details are reported in [66].

Table 5.1 Network Topology Setup in Premier Study

Network

Topology
Router Host

Simulation

Engine Node

Campus 20 40 3

TeraGrid 27 150 5

Brite 160 132 8

84

5.4.4 Hierarchical Load Balance Approach

5.4.4.1. The Small Achieved MLL Problem

When we apply the TOP and PROF approaches to larger networks (e.g. 10,000 routers

running on 100 nodes), neither of them gets satisfactory results. Checking the partition output

manually reveals that the common reason for poor performance is that the achieved Minimal

Link Latency (MLL) across partitions is insignificant when compared to the synchronization

cost. This produces an overall simulation efficiency that is quite low. For example, for one

network of 10,000 routers, the achieved MLL was only 0.1ms; far less than the synchronization

cost of ~0.58ms for 100 simulation engine nodes (see Figure 5.20). Synchronization cost is the

time used by the simulation engine nodes for global synchronization, which need to be executed

every MLL time. In such a situation, the majority of the time will be spent in synchronization –

even perfect load balance would only moderate efficiency. This situation is quite different from

the 1ms MLL for a 160 router network and 0.9ms synchronization cost for 8 simulation engine

nodes in our previous experiments[66].

Synchronization Cost of TeraGrid Cluster

0
100
200
300
400
500
600
700
800
900

2 6 16 48 80 11
2

Node Number

D
el

ay
(m

ic
ro

se
co

nd
)

Figure 5.20 Synchronization Cost of the TeraGrid NCSA Cluster

85

5.4.4.2. Understanding Achieved MLL

The example above exposes a major problem with the existing load balance approaches. In

TOP and PROF mappings, the link latency is converted to edge weight of the graph G, and

smaller link latency leads to a larger edge weight. When the graph partitioner archives minimal

edge-cut across partitions, it is less likely to partition across the link with small link latency,

since it corresponds to a large edge weight. However, the optimization goal is the not the MLL,

but the minimum edge-cut (the sum of all edge weights that cross partitions). When we have a

large graph, the partitioner becomes less sensitive to the MLL, since even the large edge weight

from a link with MLL may only be a small part of the final edge-cut.

We may tune the converting algorithm to make the edge weights of small link latencies

large enough that it is unlikely they will across partitions, but this depends highly on the

network topology, number of the simulation engine nodes, and the physical synchronization

cost.

5.4.4.3. Optimizing MLL

To address the issue of small achieved MLL, a new hierarchical partition algorithm is

designed. To avoid partitioning across edges with small link latencies, edges with latencies

smaller than a threshold, LL, are removed from the input graph (by merging nodes) to the

partitioner and are added back to the partitioned output later. In this way, we can guarantee the

worst-case of MLL. However, this produces a new problem —how do we choose the latency

threshold, LL. If the threshold is too large, it will damage load balance, while if it is too small it

will achieve a smaller MLL than possible. Instead of guessing the threshold, our approach is to

simply try all reasonable thresholds, create a partition for each, evaluate these partitions, and

then pick up the best partition. This is feasible because the partition can be done fast, even for

86

large networks, and different partition outputs can be evaluated without running the simulation.

The pseudo code for hierarchical partitioning is present in Figure 5.21.

Input: graph G, partition N, and synchronization cost C

Output: the best partition P of graph G

Hierarchical Partition:

Set the initial Threshold of MLL (Tmll)

Loop through all reasonable Tmll:

Get the dumped graph Gd(Tmll)

Partition the Gd(Tmll) using an existing partitioner, and get P(Tmll)

Evaluate the partition result Pd(Tmll)

Pickup the best partition Pd(Tmll)

Get the best partition P of original G

Figure 5.21 Hierarchical Graph Partitioning Algorithm

This algorithm requires the graph, G, the partition number, N, and the synchronization cost

of the simulation engine nodes, C. Figure 5.20 shows the synchronization cost of the TeraGrid

SDSC cluster, which is used for all simulations in this paper. We use the synchronization cost

to set the initial threshold of MLL (Tmll) based on knowledge of the desired number of

simulation engines. A Tmll is required to be larger than the synchronization cost; otherwise all

time will be spent on synchronization, giving poor efficiency. Given the Tmll, the original graph

G is reduced to a dumped graph Gd by collapsing nodes with link latency less then Tmll into a

single node. Then any existing partition can be applied to the dumped graph Gd and get the

partitioner output. By increasing the Tmll step by step (0.1ms in our experiments), we can get a

sequence of partitions, and the remaining question is how to select amongst them.

To evaluate the candidate partitions, we use an efficiency metric Efficiency (E), which

consists of two factors, Es and Ec. The first factor (Es) represents the efficiency decided by the

achieved MLL and is calculated:

 Es = (MLL – CN)/MLL,

87

where CN is the synchronization cost of N simulation engine nodes. The latter (Ec)

represents the result of computational load balance and is calculated by:

Ec = Caverage/Cmax,

where Caverage is the estimated average load (simulation event rate) on all nodes, and Cmax is

the max load of all nodes. The final efficiency E is Es * Ec, where larger values of E correspond

to better partitions. Maximizing Es and Ec separately does not work because they represent the

tradeoff between simulation efficiency and available parallelism. Larger Es means better

simulation efficiency, but it also means less parallelism available, since smaller MLL leads to a

more coarse-grained partition graph.

In summary, our hierarchical partitioning approach balances the parallelism and decoupling

concerns in generating a good network partition. To do so, it generates and evaluates many

possible partitions. Because we can create graph partitions and evaluate graph partitions quickly,

the METIS graph partitioner[64] used in MaSSF can partition a graph with 10,000 vertexes in

about 10 seconds, we can consider thousands of possible Tmll.

5.5 Summary

In this chapter, we presented the system design and implementation of the MicroGrid

toolkit. We first introduced the soft real-time process scheduler for computation resource

simulation, and then the scaled real-time online network simulator MaSSF. These two

components together can provide accurate and efficient virtual grid modeling. After that, we

introduced the traffic based load balance algorithms to improve the scalability of the network

simulator, which is critical to support large scale virtual grid simulation.

88

Chapter 6 Validation

So far, we have presented our approaches and system design for accurate large-scale virtual

grid modeling. However, a design with these approaches and techniques alone is insufficient to

enable the systematic study of dynamic behavior. As any simulation tools, before it can be used

in any real research studies, it must be validated that the simulation results are accurate

comparing the real system behaviors; otherwise, it is useless. In this chapter, we provide

validation of the constituent models and the entire MicroGrid system on applications.

6.1 Methodology and Experimental Environment

To validate the MicroGrid system design and implementation, we first provide validation of

constituent models, including validation of the CPU resource model on one and several virtual

resources per physical resource and validation of the online network simulation models

exercised by real transport protocol stacks. Based on validation of different simulation models,

we provide validation of the whole MicroGrid system on a range of grid application programs

ranging from kernels to full-blown applications on two grid resource configurations.

The basic methodology for validation is to run applications, either real applications or

benchmarks written by ourselves, on physical resources and collect the performance data, such

as the execution time. Then we use the MicroGrid to simulate the physical resources and

execute the same applications on simulated environments. Thanks to the capability of direct

application execution on MicroGrid, the simulated application performance results are directly

comparable to what we get from the execution on physical resources.

89

All experiments are executed on a 16-node dual 2.4GHz Xeon Linux cluster with 1G main

memory each, connected by a 1Gbps Ethernet switch. The major metric for validation is the

percentage of application execution time difference between the simulated environment and real

environment. Different application and benchmarks are reported in each experiment.

6.2 Validation of the Computation Resource Simulation

To test the accuracy of the CPU Controller, a few simple benchmark programs are used. We

first run them directly on a physical machine, get the real running time T. Then we run them on

a virtual machine, which is given different fraction λ of CPU by the CPU Controller, to get a

real running time Tλ. So the virtual running time on the virtual machine is λ*Tλ. If CPU

controller is accurate, the virtual running time should equal to the real running time T and the

value λ*Tλ/T should equal to 1.

Two different benchmarks are used in this validation, one is computation intensive and the

other is a mix of computation and communication, since the accuracy of both kinds of

applications depends on the behavior of the CPU Controllers. The communication intensive

applications are left to the validation of network simulation (Section 6.3), since their

performance mainly depends on the network behaviors.

6.2.1 Computation Intensive Applications

This experiment is used to validate that the CPU controller can accurately allocate CPU

resources to computation intensive jobs. The cpuhog, which only does computation without any

input/output operations, takes 10 seconds to complete without CPU controller. Recall that the

sliding window algorithm in the CPU controller can adjust to the design accuracy error E. In all

experiments, we set the E to 5%, which means we expect 5% error margin for all validation

results (see Section 5.2).

90

Figure 6.1 The cpuhog for Single Virtual Resource

Figure 6.1 are the results for single virtual resource, which show that when there is only

one process, the error is almost always in 2%, except when it is near full utilization of the

underlying physical resource. At 90% CPU, we observe a 6.7% error. When there are multiple

processes, the running time becomes about 6-8% longer.

To understand the performance of CPU controller with multiple virtual resources on a

single physical machine, two groups of experiments are executed with three virtual resources

and five virtual resources on a physical machine respectively. Each time, the virtual resources

are created, and one cpuhog is launched on each virtual resource. Then the average completion

time is used as the virtual running time to calculate the efficiency rate λ*Tλ/T. The results are

shown in Figure 6.2. The “aggregated CPU speed” is the sum of speeds of all the virtual

machines. Most of the tests have an error of less than 4%, with the one exception of a 9% error

when total CPU is 78%.

91

Figure 6.2 The cpuhog for Multiple Virtual Resources

The inaccuracy for 90% CPU in Figure 6.1 and for 78% CPU in Figure 6.2 comes mainly

from the 5% design accuracy error in the sliding window algorithm: Since we allow 5% error

and we always choose the window size as small as possible, when the virtual machine speed is

90%, we would schedule the application for six of seven jiffies rather than nine of ten, which

causes a equivalent speed of 85.7% CPU with 4.8% error from 90% CPU; in the multiple-

virtual resource experiments, each virtual machines has 26% CPU and is scheduled for one jiffy

every four jiffies, which leads to 25% actually speed with about 4% error for 26% CPU.

These experiments show that the CPU controllers can efficiently simulate multiple virtual

resources on a single physical resource and still provide accurate computation resource

modeling for computation intensive applications.

6.2.2 Applications with Mixed Computation and Communication

This experiment is designed to demonstrate that the CPU controller can achieve accurate

performance for application with mixed computation and communication. As discussed in

Section 5.2, these applications represent much larger challenge than computation intensive

applications, because the CPU controller has no idea whether a waiting process is waiting for

92

network delay or is just scheduled out by the operating system. The mixhog executes

computation and communication combination in loop. We can control the length and ratio of

computation and communication to check how the CPU controller behaves for different

application patterns. The CPU controller design still uses a 5% design accuracy error (see

Section 5.2).

Figure 6.3 shows the accuracy of the CPU controller under different communication

granularity. The communication and computation ratio in the mixhog is fixed (1:1, 1:2, and 1:3)

and the communication time (network delay) changes from 10ms to 100ms in these experiments.

The errors are always within 10%, except when the communication delay is so small that it is

comparable to the OS scheduling granularity (10ms).

CPU Control of different Granuarity

0

0.2

0.4

0.6

0.8

1

1.2

10 9 8 7 6 5 4 3 2 1

network delay (10ms)

ef
fic

ie
nc

y
ra

te

1:01
1:02
1:03

Figure 6.3 The mixhog with Different Communication Granularity

Figure 6.4 and Figure 6.5 are the results of CPU controller accuracy against different virtual

CPU speed. We can see that the accuracy changes according to the virtual CPU speed, due to

the fact that the sliding window size. As we have discussed in Section 5.2, larger sliding

window size can lead to larger error. When most time the error is less than 10%, the error can

reach 20% when the virtual CPU speed is at 30%, 40% and 60%.

93

CPU control with 20ms network delay

0

0.2

0.4

0.6

0.8

1

1.2

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

expected cpu speed

ef
fic

ie
nc

y
ra

te

ratio(1/2)
ratio(1/3)

Figure 6.4 The mixhog with 20ms Network Delay

CPU control with 30ms network delay

0

0.2

0.4

0.6

0.8

1

1.2

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

expected cpu speed

ef
fic

ie
nc

y
ra

te

ratio(1/2)
ratio(1/3)

Figure 6.5 The mixhog with 30ms Network Delay

In summary, our experiments show that the CPU controller can model CPU speed

accurately. The multiple virtual resources experiments also demonstrate its capability to model

multiple virtual CPUs on one physical machine accurately.

6.3 Validation of Network Simulation

To test the accuracy of the network simulation, the main focus is on checking the

correctness of simple TCP application, since this simple test involves the most important and

complex part of the network simulation, the TCP protocol implementation. A majority of

94

network application performance depends on the TCP protocol behaviors. This simple test can

also validate if the CPU controller can guarantee quick response time (Section 5.2), and if the

traffic interception and requests handling is quick enough with negligible overhead (Section

5.3).

We use a client/server program tcpSender/tcpRecver which sends and receives packets

using TCP/IP between two nodes. In each iteration, the sender sends a message to the receiver

then wait for a one-byte reply from the receiver. The tcpSender can report the latency for each

message and the achieved network throughput, under different message sizes. We want to

compare results from simulated networks to those from real networks. If no real data available,

we use the theoretical values as metrics.

When message size is small, the latency for each iteration is close to the half of network

round trip time (RTT); when message size is large enough, the throughput approximates the

maximum bandwidth between the two nodes. The TCP throughput is affected by network

latency (L), TCP window size (W), network capacity (C), and packet loss[67]. If there is no

packet loss, the maximum throughput should be close to:

 Throughput = min(C, W/(2*L))

6.3.1 Validation of Local Area Network

Our experiments first test the real network performance between two nodes on a cluster.

The nodes are dual Xeon 2.4GHz machines connected by GigE, configured with 128KB TCP

window. Experiments show that real network has latency 0.222ms and bandwidth 782.87Mbps.

On the MicroGrid, we simulate the two nodes with 128K TCP window and 0.2ms wire latency.

The simulated results of different virtual CPU speeds are shown in Figure 6.6 and Figure 6.7.

95

Figure 6.6 Network Throughput on GigE LAN

Figure 6.7 Network Latency on GigE LAN

The figures show that the virtual bandwidth (simulated) is close to the target bandwidth

when virtual CPU speed is faster than 25% of 2.4GHz Xeon. When virtual CPU speed is not

fast enough to support the memory and I/O operations, the bandwidth falls off.

The network latency is about 0.15ms longer than the configured wire latency. This is

presumed to be due to Agent overhead, overhead through TCP/IP stacks, and the overhead of

the MaSSF simulator.

96

6.3.2 Validation of Metro Area Network

The next set of tests use a network topology with a 1ms latency between the two nodes, and

varies the TCP window size from 32KB to 128KB. The results of different CPU speeds are

shown in Figure 6.8 and Figure 6.9.

Figure 6.8 Network Throughput on MAN

Figure 6.9 Network Latency on MAN

97

In this case, the network capacity is not the bottleneck any more, so the TCP throughput is

mainly decided by latency and TCP window size. We calculate the throughput upper bound in

theory, as shown in Table 6.1.

From Figure 6.8 and Table 6.1 we see that our simulator achieves 82-90% of the theoretical

maximum bandwidth. Considering the overheads on TCP stacks and application’s memory

operations, these are excellent results.

As for latency, the simulated value, as shown in Figure 6.9, is about 0.25ms higher than the

configured wire latency. Still, this is due to overheads on TCP stacks, application memory

operations, and MaSSF overhead.

 Table 6.1 Theoretical Maximum Throughput on a Network Channel

 32KB 48KB 64KB 128KB

1 ms 128Mbps 192Mbps 256Mbps 512Mbps

5ms 25.6Mbps 38.4Mbps 51.2Mbps 102.4Mbps

10ms 12.8Mbps 19.2Mbps 25.6Mbps 51.2Mbps

6.3.3 Validation of Wide Area Network

The following figures in Figure 6.10 show the bandwidth on network channel with latency 5

ms and 10ms respectively. The results are consistent with the theoretical bounds in Table 6.1.

98

Figure 6.10 Network Throughputs on WAN

Based on these experimental results, we conclude that the MaSSF network simulator can

model TCP communications accurately. With no network congestion, the modeled maximum

bandwidth approximates real results in local, metro, and wide area networks. The network

latency is also modeled accurately, excluding overhead which takes about 0.15-0.25ms per

message.

99

We did not evaluate the simulator with network congestion, although our simulator supports

the capability to model competitive traffic (background traffic). Performance with congestion is

not easy to evaluate since it depends on the competitive traffic model. Here we also provide no

validation on routing protocols such as OSPF and BGP4, instead, there are validation test suites

coming with the software package.

6.4 Validation of the MicroGrid on Applications

We have provided validation on each individual simulation module. But this is not enough,

since what we really care is if these simulation modules together can provide accurate modeling

of a virtual grid environment. More specifically, does the scaled real-time mechanism

effectively coordinate multiple resources simulation modules and create correct simulation

results? Can the CPU controller handle mix computation and communication well for real

applications? To answer these questions, the best approach is to validate the MicroGrid on real

applications which can exercise most components together with large traffic and computation

loads.

6.4.1 Applications

In this section, we run five classic applications on both real environment and virtual

environment simulated using the MicroGrid. Before the results, we first introduce the five

applications briefly. These applications are used in the GrADS project[9].

All five applications are SPMD MPI applications and have been previously tested on the

GrADS testbed in various real-world experiments. These applications were integrated into the

GrADS framework and tested in various experiments as part of the following efforts:

ScaLAPACK [68], Jacobi [69], Game of Life [69], Fish [70], and FASTA [71].

ScaLAPACK is a popular software package for parallel linear algebra, including the

solution of linear systems based on LU and QR factorizations. We use the ScaLAPACK right-

100

looking LU factorization code based on 1-D block cyclic data distribution. The application is

implemented in Fortran with a C wrapper. The data-dependent and iteration-dependent

computation and communication requirements of ScaLAPACK provide an important test for the

MicroGrid simulation. In our experiments we used a matrix size of 6000x6000.

FASTA The search for similarity between protein or nucleic acid sequences is an important

and common operation in bio-informatics. Sequence databases have grown immensely and

continue to grow at a very fast rate; due to the magnitude of the problems, sequence comparison

approaches must be optimized. FASTA is a sequence alignment technique that uses heuristics to

provide faster search times than more exact approaches, which are based on dynamic

programming techniques. Given the size of the databases, it is often undesirable to transport and

replicate all databases at all compute sites in a distributed grid. We use an implementation of

FASTA that uses remote, distributed databases that are partially replicated on some of the grid

nodes. FASTA is structured as a master-worker and is implemented in C. For MicroGrid

validation purposes, an important aspect of FASTA is that each processor is assigned a different

database (or portion of a database) so the MicroGrid must properly handle input files and

provide proper ordering of data assignments onto processors. In our experiments the sizes of the

databases are 8.5MB, 1.7MB and 0.8MB respectively. The query sequence is 44KB.

The Jacobi method is a simple linear system solver. A portion of the unknown vector x is

assigned to each processor. During each iteration, every processor computes new results for its

portion of x and then broadcasts its updated portion of x to every other processor. Jacobi is a

memory-intensive application with a communication phase involving lots of small messages. In

our experiments we used a matrix size of 9600x9600.

The Fish application models the behavior and interactions of fish and is indicative of many

particle physics applications. The application calculates Van der Waals forces between particles

in a two-dimensional field. Each computing process is responsible for a number of particles that

101

move about the field. The amount of computation depends on the location and proximity of

particles, so Fish exhibits a dynamic amount of work per processor. In our experiments we used

6,000 particles.

Conway’s Game of Life is a well-known binary cellular automaton. A two-dimensional

mesh of pixels is used to represent an environment of cells. In each iteration every cell is

updated with a 9-point stencil and then processors send data from their edges (ghost cells) to

their neighbors in the mesh. Game of Life has significant memory requirements compared to its

computation and communication needs. In our experiments we used a matrix size of 9600x9600.

6.4.2 Experiment Environment

We use a subset of the multi-site testbed for the GrADS project as our testbed. The 11

machines used are as following:

UCSD cluster: four 2100+ XP Athlon AMD (1.73 GHz) with 512 MB RAM each. These

systems run Debian Linux 3.0 and are connected by Fast Ethernet.

UIUC cluster: three 450 MHz PII machines with 256MB memory connected via TCP/IP

over 1Gbps Myrinet LAN. These systems run RedHat Linux 7.2.

UTK cluster: four PIII 550 MHz machines with 512MB memory, running RedHat Linux

7.2, and connected with Fast Ethernet.

The three sites are connected by the Internet2 network with 2.4Gbps backbone links. During

our experiments, we observed NWS latency and bandwidth values over a period of 12 hours and

obtained ranges as shown in Table 6.2.

In our simulation, we configure all the machines to have 64KB TCP window. The wide

area latency is as shown in Table 6.2; the LAN latency is 0.2 ms. We have to remind the

audience that, the simulated LAN latency might higher than real latency due to simulation

102

overhead as shown in Section 6.3; while the simulated WAN bandwidth will higher than real

bandwidth due to lack of contention.

Table 6.2 Network performance of the testbed, reported by NWS

 UCSD machine UIUC machine UTK machine

UCSD machine 60-80Mbps,

0.2 ms

3-7Mbps

31 ms

4-6Mbps

30 ms

UIUC machine 3-7Mbps

31 ms

115-220Mbps

0.2 ms

7-17Mbps

11 ms

UTK machine 7-8Mbps

30 ms

12-18Mbps

11 ms

82-87Mbps

0.2ms

6.4.3 Simulation Results

Two groups of experiments are conducted on those sites: “Cluster” group uses four UTK

machines to do clustering computation; “Grid” group uses three machines from each of the

three sites. Both groups use a separate UCSD machine to run Globus gatekeeper. The results

are shown in Figure 6.11.

103

Figure 6.11 Running Time of Applications

For the cluster, all applications run slower on the MicroGrid than on real testbed; most of

them have error in 6%-27%, except 66% for ScaLAPACK. The extra overhead comes from

two major sources: 1) The MaSSF has some overhead which increases network latency. 2)

WrapSocket wraps many system functions for simulation, which will cause some overhead.

For the grid environment, the simulated time has about 5% - 35% errors. We can see

several interesting differences from the cluster results. ScaLAPACK still runs slower on the

MicroGrid than on real testbed, but much closer than on cluster, because ScaLAPACK uses a

lot of small communications and the simulation overhead will have more impact on simulated

LAN latency than on simulated WAN latency (as shown in Section 6.3). Fish and GameOfLife

run faster on the MicroGrid than on real grid. A possible reason is that they both use many

large communications, and the simulated network bandwidth is higher than real system due to

lack of contention.

6.5 Summary

In this chapter we provide the validation on the MicroGrid system and therefore on our

approaches for virtual grid modeling. Specifically, we provide:

104

1）Validation of computation resource simulation. Experiments with the MicroGrid on

simulating multiple virtual resources per physical resource match closely within 2%-9%, even

for applications with mix of computation and communication.

2）Validation of the online network simulation. Latency results reported by the TCP

client/server benchmark vary only 0.15-0.22ms for different networks, and the throughput

results vary from 5% to 18%.

3）Validation of the whole MicroGrid system on a range of grid application programs on

two grid resource configurations. Most application execution times match within 65% to 95%.

With a solid validation of the MicroGrid toolkit, a range of interesting experiments for grid

applications and middleware is virtually unbounded.

105

Chapter 7 Scalability Studies

In this chapter two large network simulations, one single AS network of 20,000 routers and

one multi-AS network of 100 ASes with 200 routers each, are used to demonstrate the

scalability of the MicroGrid system. This scale of network is quite large, even comparing to the

largest real grid project testbeds. For example, the Grid2003 [3] has 27 sites across US and

Korea which collectively provides more than 2000 CPUs. At the same time, hierarchical traffic-

based partitioning and mapping approaches in Section 5.4 are used in these experiments to show

the scalability improvement. Practically, now it is possible to do realistic full grid simulation

with the MicroGrid in a cluster.

7.1 Experimental Setup

7.1.1 Improve Scalability through Load Balance

The MicroGrid must be scalable to support the study of large networks, resources,

middleware, and applications. While most resources can be naturally simulated in parallel with

enough physical resources, all the coordination, synchronization and dynamic interaction

amongst resources must go through network communication. This means the network must be

simulated as a single system with global coordination, and thus the scalability of network

simulation is a critical challenge for the entire MicroGrid system. In particular, the challenge is

scalable detailed packet-level simulation combined with online simulation. We require packet-

level simulation to ensure fidelity in simulation of network, protocol, and application behavior.

Higher level simulation approaches, such as flow level simulation and approximation through

106

network aggregation provide insufficient fidelity for our problems if interest in dynamic

distributed systems.

As mentioned in Section 5.4, our network simulator MaSSF uses distributed discrete-event

simulation engine to achieve scalable performance. But only this is not enough to provide a

scalable simulation. Like all other distributed or parallel applications, MaSSF must have good

load balance for good speedup, and such load balance is challenging for network simulation.

We have presented three traffic-based mapping approaches and hierarchical load balance

enhancement for large scale network in Section 5.4. In this chapter, we want to study the

performance of hierarchical load balance technique on traffic-based mapping approaches.

Two traffic-based mapping approaches are chosen as the baseline, topology-based mapping

(TOP) and profile-based mapping (PROF). And then the hierarchical load balance technique are

applied on them and got topology-based mapping (HTOP) and hierarchical profile-based

mapping (HPROF), respectively. Here the PLACE mapping approach is skipped since it is

expected to get the performance in the middle of HTOP and HPROF, based on the fact that the

traffic information accuracy in PLACE is in the middle of TOP and PROF.

In our experiments, the TOP and PROF partitioners achieve such small MLL that their

performance is extremely poor and the simulations cannot be completed in a reasonable time

limit. So we adjusted the link latency to edge weight converting algorithm for the large scale

network simulation, so partitions are less likely to across edges with small link latency. This

tuning is not a general solution and has to be done according different topologies manually.

Their results are labeled as TOP2 and PROF2.

7.1.2 Evaluation Methodology

The ultimate goal for scalability is to enable simulation of larger networks with limited

physical resources and to enable faster simulation of a specific network with given traffic load.

107

So our basic evaluation methodology is to simulate a large network with representative traffic

load as fast as possible. The network must be large enough to represent a realistic grid

environment, and the traffic load should also be intensive enough with dynamic characteristics

similar to what are shown on the real Internet.

In this study, we chose two large networks topologies, one single AS network of 20,000

routers and one multi-AS network of 100 ASes with 200 routers each. We will give more details

about these networks and justify our choices in the following sections.

Two kinds of traffic loads are used in our experiments; the background traffic and the traffic

from real applications. The background traffic are used to provide the realistic Internet network

conditions and dynamics, and the real applications are used to represent the simulation targets

that we want to simulate it as fast as possible.

For background traffic, there are 8,000 clients continuously sending HTTP file requests to

2,000 servers. The average time gap between two successive requests of a client is 5 seconds

and average file size is 50KB. Foreground traffic is created live from Grid applications,

including ScaLapack[68] and GridNPB3.0[72]. ScaLapack is introduced in Section 6.4.1.

GridNPB3.0 is a set of grid benchmarks in a workflow style composition in data flow graphs

encapsulating an instance of a slightly modified NPB task in each graph node, which

communicates with other nodes by sending/receiving initialization data. GridNPB includes a

range of computation types and problem sizes, and in our experiments we use the combination

of Helical Chain (HC), Visualization Pipeline (VP), Mixed Bag (MB) applications, all run at

class S size. These programs run for about 30 minutes on our platform.

The experiments use the TeraGrid Itanium-2 cluster for simulation engine nodes. The

cluster nodes are dual 1.3GHz Itanium-2 processors with 2Gigabytes of memory, linked with

Myrinet 2000 using MPICH-GM. We use 90 nodes as the simulation engines, and 7 nodes for

application execution.

108

7.1.3 Evaluation Metrics

The first metric is the application simulation time T, which is the time taken to simulate an

application in a specific network simulation. As faster simulation is the ultimate goal of our

scalability studies, it is the most important metric.

To get deeper insight into the efficacy of our partition and load balance techniques, we also

use three other metrics: achieved MLL, load imbalance, and parallel efficiency.

The second metric achieved MLL shows the effect of the hierarchical load balance

approaches in increasing parallelism and is reported directly by the partitioner.

For the third metric load imbalance, we define the load of a simulation engine node as the

event rate of the simulation kernel (essentially one per network packet). Using these counters,

we calculate the overall load imbalance across all the physical nodes in the actual simulation.

Assuming the simulation kernel event rates are k1, k2, …, kn, for n nodes used by the simulation

engine, the load imbalance is normalized by the standard deviation of {k}.

The last metric is the parallel efficiency, PE(N, L) for a problem of size L on N nodes is

defined in the usual way[73] by
),(*

)(),(
NLTN

LTseqLNPE = ,

where T(L, N) is the runtime of the parallel algorithm, and Tseq(L) is the runtime of the

best sequential algorithm. Tseq(L) cannot be measured directly since the network is too large to

be simulated on a single machine, thus, we approximate the Tseq(L) by

chNodentRateOnEaMaximalEve
NumberTotalEventLTseq =)(.

109

7.2 Flat Network Simulation

7.2.1 Single-AS Network Topology

We generate network topologies for our experiments with an adapted BRITE tool [74], a

degree-based Internet topology generator following the Power-Law[75]. The flat network

topology includes 20,000 routers and 10,000 hosts, which are spread over a geographic area of

5000miles by 5000miles (roughly the size of North American continent, with maximal network

latency about 50ms). The routing is decided by the OSPF shortest-path routing protocol.

We chose this network single-AS topology for mainly two reasons. First, with the simple

shortest-path routing, simulation of this network demonstrates the capability baseline of our

network simulator, including the scale of network entities it can simulate and the number of

traffic it can handle. Second, this network has a router count comparable to the size of a large

Tier-1 ISP, such as the AT&T network [76]. So the simulation result is valid for many

applications that exist in a single ISP network.

7.2.2 Flat Network Simulation Results

In this study, application workloads are executed on the single-AS network with moderate

background traffic, and we study the performance of four mapping approaches: TOP2, PROF2,

HTOP, and HPROF. As we discussed above, both TOP2 and PROF2 mappings are tuned for

the large scale network simulation.

Simulation results are reported following four metrics introduced in Section 7.1.3.

7.2.2.1. Application Simulation Time

The application simulation time of both applications is shown in Figure 7.1. For ScaLapack,

the use of PROF2 mapping reduces overall simulation time of TOP mapping by 14%, and the

use of the hierarchical mapping (HPROF) further reduces the simulation time up to 40%.

110

Simulation Time on Single-AS

0

50

100

150

200

ScaLapack GridNPBS
im

ul
at

io
n

Ti
m

e
(s

ec
)

HPROF PROF2 HTOP TOP2

Figure 7.1 Simulation Time on the Single-AS Network

7.2.2.2. Achieved MLL

The achieved MLL is shown in Figure 7.2, and we can see both TOP2 and PROF2 still have

much smaller MLL (about 0.6ms) comparing to HTOP and HPROF. It is clear that the

hierarchical approaches can significantly increase the MLL, producing enough parallelism for

large-scale simulation. These MLL values show that there is enough parallelism achievable for

networks of ~20,000 routers in 5000miles by 5000miles area using 90 simulation nodes. These

simulations will provide good efficiency with slowdown of 8 times.

Achieved MLL on Single-AS

0
0.5

1
1.5

2
2.5

3
3.5

ScaLapack GridNPB

M
LL

(m
s)

HPROF PROF2 HTOP
TOP2 PROF TOP

Figure 7.2 Achieved MLL on the Single-AS Network

111

Despite the fact that it produces the largest MLL (3ms), HTOP does not work very well

compared to HPROF. The inaccurate load prediction in HTOP produces a much larger load

imbalance which hurts performance.

7.2.2.3. Load Imbalance

The measured load imbalance for both applications is shown in Figure 7.3. The figure

reports the normalized load imbalance across the physical simulation engine nodes for each

combination of mapping approach and network topology. Each mapping approach produces

significantly different results. Compared to TOP2, PROF2 improves load imbalance by about

7%. The HPROF mapping also improves the load imbalance by 11% over HTOP. It is clear that

the use of detailed traffic information from a previous simulation execution provides a critical

advantage in achieving effective network partitions.

It is also shown that the HPROF mapping produces better load balance than TOP2 and

PROF2. This improvement is surprising because the hierarchical approaches use a simpler

graph with coarse-grained node weights. So they should have less chance to achieve better load

balance. We believe the explanation is that the underlying graph partitioner METIS does a

better job for smaller graphs, since reduced graphs have many fewer vertexes.

Load Imbalance on Single-AS

0

0.2

0.4

0.6

0.8

ScaLapack GridNPB

Lo
ad

 Im
ba

la
nc

e

HPROF PROF2 HTOP TOP2

Figure 7.3 Load Imbalance on the Single-AS Network

112

7.2.2.4. Parallel Efficiency

The parallel efficiency of both applications is shown in Figure 7.4. While the overall

efficiency of network simulation at this scale does not reach 100%, these values are excellent

for parallel discrete event simulations on irregular loads. The HPROF for ScaLapack achieves

about 40% parallel efficiency, a dramatic 64% improvement over TOP2. These levels of

parallel efficiency enable effective large-scale network simulations.

Parallel Efficiency on Single-AS

0
0.1
0.2
0.3
0.4
0.5

ScaLapack GridNPB

Pa
ra

lle
l E

ffi
ci

en
cy

HPROF PROF2 HTOP TOP2

Figure 7.4 Parallel Efficiency on Single-AS Network

7.3 Multi-AS Network Simulation

The Internet is not a flat network with shortest-path routing. Instead, it is organized as a

collection of ASes with traffic shaped by BGP policy routing. In such networks, connectivity

does not mean reachability and the real dynamics are quite different from a single-AS network.

Such networks present greater challenges to achieving load balance because the traffic load is

less coupled to network topologies. Despite its importance, to our knowledge multi-AS

networks have never been simulated in large-scale because of the complexity involved.

Although there is much research on Internet-like topology generation [74, 77, 78], these

studies focus on physical connectivity and pay little attention to routing configuration

(particularly BGP). There are two major reasons for this situation. First of all, prior to our

113

MaSSF simulator, no existing network simulator supported large scale simulation with detailed

BGP routing. Simulators either have no support for BGP routing (DaSSFNet[79],

ModelNet[35]), or they are limited by scalability to such a degree that BGP policy routing is

less relevant (NS2[30], SSFNet[22]). Second, real Internet BGP routing configurations are not

publicly available, since routing policy are closely tied to commercial contract terms that are

considered highly confidential by ISPs. Fortunately, recent research has explored inferring AS

relationships and BGP routing policy from publicly available information, such as BGP routing

tables. Several of these efforts have made significant progress [80], making it possible for us to

automatically generate realistic BGP routing policies into our network generator.

7.3.1 Multi-AS Network Topology

The network topology is created by our maBrite topology generator with BGP routing

configuration as described above. It includes 100 ASes, each containing 200 routers. In addition,

10,000 hosts are randomly attached to Stub ASes for background traffic generation and live

traffic agent. All these routers and hosts are spread to a geographic area of 5000miles x

5000miles.

The routing inside each AS is decided by the OSPF routing protocol and inter-AS routing is

decided by BGP4 routing protocols. The BGP routing policy configuration is set up by our

automatic BGP routing configuration procedure, listed in the Appendix A.

7.3.2 Multi-AS Network Simulation Results

Application workloads are executed on the multi-AS network with moderate background

traffic, and we evaluate the performance of four mapping approaches: TOP2, PROF2, HTOP,

and HPROF. Again, both TOP2 and PROF2 mappings are tuned for the large scale network

simulation.

Simulation results are reported following four metrics introduced in Section 7.1.3.

114

7.3.2.1. Application Simulation Time

The simulation time of both applications is shown in Figure 7.5. For ScaLapack, the use of

PROF2 mapping reduces overall simulation time of TOP2 mapping by 21%, and the use of the

hierarchical mapping (HPROF) further reduces the simulation time up to 41%. The GridNPB

has less improvement, since it has less communication compared to ScaLapack.

Simulation Time on Multi-AS

0
20
40
60
80

100
120
140
160

ScaLapack GridNPBS
im

ul
at

io
n

Ti
m

e
(s

ec
)

HPROF PROF2 HTOP TOP2

Figure 7.5 Simulation Time on the Multi-AS Network

7.3.2.2. Achieved Minimal Link Latency

The achieved MLL is shown in Figure 7.6. Like on the Single-AS network, the original

TOP and PROF produce small MLL’s and our data reflects the resulting poor simulation

efficiency. The hierarchical approaches achieve much larger MLL’s, in some cases ten times

larger. MLL’s of this size support good simulation efficiency.

115

Achieved MLL on Multi-AS

0

0.5

1

1.5

ScaLapack GridNPB
M

LL
(m

s)
HPROF PROF2 HTOP
TOP2 PROF TOP

Figure 7.6 Achieved MLL on the Multi-AS Network

7.3.2.3. Load Imbalance

The measured load imbalance for ScaLapack and GridNPB is shown in Figure 7.7. The

figure reports the normalized load imbalance across the physical simulation engine nodes for

each combination of mapping approach and network topology. Each mapping approach

produces significantly different results. Compared to the TOP2 mapping, the PROF2 mapping

improves the load imbalance by about 15%. The HPROF mapping improves the load imbalance

over HTOP by 31%.

As we anticipated, the load imbalance for this multi-AS network is much larger than the

single-AS network due to the use of BGP routing, and it makes the improvement from profile-

based techniques significant compared to that of the single-AS network in Section 7.2.

116

Load Imbalance on Multi-AS

0
0.2

0.4
0.6

0.8
1

ScaLapack GridNPB
Lo

ad
 Im

ba
la

nc
e

HPROF PROF2 HTOP TOP2

Figure 7.7 Load Imbalance on the Multi-AS Network

7.3.2.4. Parallel Efficiency

The parallel efficiency of the simulation of both applications is shown in Figure 7.8. While

the overall efficiency of network simulation does not approach 100%, HPROF for ScaLapack

can achieve about 40% parallel efficiency, about a 64% improvement from TOP2. This level of

parallel efficiency enables simulation of large-scale Multi-AS networks.

Parallel Efficiency on Multi-AS

0
0.1
0.2

0.3
0.4
0.5

ScaLapack GridNPB

P
ar

al
le

l E
ffi

ci
en

cy

HPROF PROF2 HTOP TOP2

Figure 7.8 Parallel Efficiency on Multi-AS

In summary, these experiments show that our hierarchical load balance approaches still

work well for large multi-AS networks with realistic BGP routing configuration.

117

7.4 Summary

Large-scale and realism are two critical requirements for network simulation for Grid

application studies. In this paper, we first study a large flat network with 20,000 routers. Then,

at this scale, we study realistic network structures (100 AS’s, BGP4 and OSPF routing) versus

flat OSPF routing. Multiple load balance approaches are evaluated against these networks. The

best of them, hierarchical profile-based load balance (HPROF), can improve the load imbalance

by 40% and reduces the simulation time by about 50%. Combining with our packet-level hop-

by-hop network simulator and detailed BGP4 protocol support, we demonstrate that we can

provide realistic large-scale network simulation for networks including about 20,000 routers.

Based on the generality of these topologies and traffic loads, we can expect similar

scalability results for simulation with comparable network size. We believe that it is fair to say

the MicroGrid, therefore our integrated online simulation approach, has achieved the scalability

enough for accurately modeling a virtual grid environment. Its capability is larger than the

simulation requirements of most existing grids and it is large enough to model future grids.

118

Chapter 8 Case Studies

Two case studies are used to demonstrate the capability of the MicroGrid for network and

grid related research. The first is a study of BGP simulation configuration, the second is the

study of tolerating Denial-of-Service attacks with a proxy network. As we will show in the

experiments details, neither of them is possible without the MicroGrid toolkit, due to the large

network size, detailed simulation, and/or online simulation.

8.1 A Study of BGP Simulation Configuration

Border Gateway Protocol (BGP) is used to exchange routing information between different

computer networks. It is commonly agreed that we lack clear understanding of this key element

of Internet infrastructure. To address this problem, simulation is one of the tools used most by

researchers. However, current BGP simulation tools are limited on scalability and BGP routing

policy support, and thus, it is hard to evaluate the realistic of current BGP simulation practice.

The unique capability of the MicroGrid toolkit provides new opportunity on this. Given the

capability to simulate large topology, given the full support for BGP routing policy and inferred

AS relationship form real BGP routing table, and given the capability to compare the simulation

results and real data, how close will the simulation data be compared to the real data? In this

study, a real Internet AS-level topology is constructed with the most realistic routing

configuration ever achieved; then the MicroGrid is used to simulate this network topology, and

simulation data are compared directly to real data to check how closely the simulation matches

the reality.

119

Results show 1/4 match. Actually, it is not so bad, as we will show through analysis

presented later. It means the simulator does catch something real. We could trust BGP

simulation for some studies, such as convergence time, dampening effects, etc. Of course, ideal

simulation generates 100% match, but this is hard to achieve. So the next question is how to

improve simulation to reality as much as possible.

8.1.1 Problem Definition and Approach

The Internet is composed of a large number of different networks, each of which is

administrated by a different organization – Theses are called Autonomous Systems (AS). To

route data packets from one network to the other, the Internet uses an Inter-domain routing

infrastructure. Border Gateway Protocol (BGP) [62] is the current de-facto inter-domain routing

protocol, which is widely deployed with the global Internet since 1996. As a protocol, ideally,

we should have a clear understanding about BGP, such as its performance, behavior,

vulnerabilities, reaction to stressful events, scalability issue, and so on. However, due to its

large-scale and distributed nature, it is commonly agreed that such understanding remains a

major research challenge.

Simulation technique is one tool widely used by BGP research community to help

improving our understanding [81, 82] of the complexity of this large-scale routing system. It is

important to revisit the issue of how BGP simulations are configured since different

configurations yield different simulation results. Since BGP is more regarded as a policy-based

routing protocol, policy configuration in simulation plays a critical role on the simulation results.

In reality, the BGP configuration and routing policy vary on network topologies and business

decisions. So one key problem of the BGP simulation is not clear; that is, how closely does the

current BGP simulation practice, especially the policy configuration, match to the reality?

120

One straightforward way to evaluate the reality of BGP simulation is to run simulations

with the real Internet topology, then compare the simulation results with real routing data.

However, the use of this approach faces two major challenges.

First, such approach requires a network simulator to support large-scale simulation with

detailed BGP routing. Current simulators either have no support for BGP routing

(DaSSFNet[79], ModelNet[35]), or are limited by scalability to such a degree that BGP policy

routing is less relevant (NS-2[30], SSFNet[22]). The scalability coming with the MaSSF

provides the opportunity to solve this problem. It can simulate a large network with about

~20,000 ASes on a 100-node cluster, which is large enough for real Internet study.

Second, real Internet BGP routing configurations are not publicly available, since the

routing policy is closely tied to commercial contract terms that are considered highly

confidential by ISPs. Fortunately, recent research has explored inferring AS relationships and

BGP routing policy from publicly available information, such as BGP routing tables. In [83],

researchers examined the routing policies in the Internet and classified them into several

categories. Such result is well accepted and used in simulations. The maBrite topology

generator coming with MaSSF can import real network topology and convert AS relationship to

BGP routing configuration.

In our experiment, the MicroGrid toolkit is used to simulate real Internet AS-level topology.

First, a real Internet AS-level topology is obtained from BGP routing tables, which are publicly

available at various observation points [84, 85]. After that, BGP routers are configured with

routing policies based on AS relationships inferred from [83] and some extra information

available from the routing table data (see more details in Section 8.1.2). Without shrinking the

Internet topology, it is now possible for us to compare the simulation results with real routing

data for the purpose of checking if such configuration matches the reality. With the real Internet

topology and the routing policy inferred from exiting BGP routing table, we claim that our BGP

121

simulation is the most realistic that has ever been done. And our results represent the state-of-

the-arts of current BGP simulation practice.

8.1.2 Construct the Realistic Internet BGP Simulation

Configuration

8.1.2.1. Convert AS Relationship to BGP Routing Policy

BGP4 is the most widely used inter-AS routing protocol used to exchange reachability

information between ASes, in the form of route announcements. Each route announcement

contains attributes, such AS path, multi-exit-discriminator (MED), and next hop. The most

important attribute, AS path, is a list of AS numbers associated to a network. Other attributes

are used to define routing policies. One of the key features of the BGP protocol is its capability

to support policy routing, which allows each AS to choose its own policy in accepting routes,

selecting the best route, and announcing routes to its neighbors. Two kinds of routing policies

are: Import Policy and Export Policy.

1) Import Routing Policy: When receiving a route announcement from its neighbor, a

router applies its import policies to the route, which include denying, or permitting a route, and

assigning a local preference to indicate how favorable the route is. Local preference is used to

differentiate routes received from different neighbors, since a BGP router may receive routes to

the same destination from different neighbors and it must choose the best route to be used in its

local routing table. BGP incorporates a sequential decision process to pickup the best route from

a set of candidates to a given prefix. For example, the highest local preference, the shortest AS

path, the lowest origin type, and the smallest MED for routes with the same next hop AS. There

is a long list of criteria to set the preferential order of routes, and the first and the most

important rule is the local preference. In practice, network administrators usually use local

122

preference to enforce their import routing policies. According to [80], there are two general

rules:

Route Preference between Provider, Customers, and Peers: Network operators usually

assign different local preferences to routes learned from providers, customers, and peers.

Customer routes have the highest local preference, and peer routes have higher local preference

than providers.

Consistency of Local Preference with Next Hop ASes: Operators may set local

preference configuration based on prefix level or next hop AS level. Since it is easier to

maintain provider, customer, and peer preferences based on next hop AS level, most ISPs use

this approach in practice.

2) Export Routing Policy: BGP routers use export policies to decide which routes are to be

propagated to their neighbors. The policies are usually transformed directly from AS

relationships.

Exporting to a Provider: An AS can export its local routes and routes of its customers, but

can not export routes learned from its peers or providers

Exporting to a Peer: An AS can export its local routes and routes of its customers, but can

not export routes learned from its peers or other providers

Exporting to a Customer: An AS should export all routes it knows to its customers

These basic export policy rules are the direct requirement of commercial agreements. For

example, the first rule guarantees that a provider will not use its customer network to transit

traffic, and the last rule guarantees that the customer can get full Internet access through its

provider.

123

 1) Generate AS level topology based on the BGP routing table

2) Decide AS relationships from the inferring

3) Setup Import Routing Policy

a. Accept all incoming routes

b. Set Local Preference according to Next Hop AS, which prefer

routes from Customer, over routes from Peer, and over routes

from Provider

4) Setup Export Routing Policy

a. To Provider: Export local and Customer routes

b. To Peer: Export local and Customer routes

c. To Customer: Export all routes

5) Pickup default/backup routers for multi-homed Ases

Figure 8.1 Procedure for Internet AS-level Topology Generation

With these heuristic rules, we can convert the inferred AS relationship to routing policies in

maBrite topology generator (Figure 8.1).

8.1.2.2. Improve the Routing Configuration with Real Routing Tables

So far, we capture the major routing policy based on AS relationship. However, AS

relationship is not the only factor for routing decisions. There are a few others details may affect

the final routing decisions, such as the multi-homed stubs AS [63] and selective Announcement

[80]. With the help of real routing tables, we can polish our topology to incorporate this

information.

Multi-home is a popular practice to provide routing redundancy and higher network

bandwidth. A multi-homed AS can have 2 or more providers, but it may prefer to use one

provide for most of the traffic, and use the other provider as a backup, in case the routing to the

first provider fails or is congested. This decision is not derivable from AS relationships;

however, it can be estimated from the real routing table data. We can get its preference by

checking all routing entries to that stub AS at observation points. We compare total number of

124

routing entries to AS S that uses the provider M and that using the provider N, and then set the

export preference of AS S.

B

A

D

C

E

p1
p2

Provider-to-Customer

Peer-to-Peer

Figure 8.2 Selective Announcement

Selective Announcement is used when the AS wants to treat parts of its network differently.

For example, as shown in Figure 8.2, the Stub AS A has two sub-networks with prefixes p1 and

p2. The AS A wants to use the provider AS B for incoming traffic of sub-network p1, and use

provider C for incoming traffic of sub-network p2. In order to achieve this effect, AS A

announces two prefixes separately; it announces only the prefix p1 to provider B, and

announces only the prefix p2 to provider C. This routing configuration is not used in our

Internet simulation, since currently the maBrite cannot create the AS configuration to generate

multiple prefixes automatically. Instead, we just pick the largest prefix and calculate its

preference as the multi-homed case above. This is the major source of error in our network

topology setup.

8.1.2.3. Scalable Routing Policy Enforcement

From the BGP routing table dumped at May 11, 2004, current Internet has about 17,000

ASes. It is still a big challenge to simulate a network of this scale, in the term of both memory

requirement and computation overhead of BGP protocols. The major memory requirement is

used to store BGP routing tables on each BGP router, and the computation overhead mainly

comes from the enforcement of routing policy.

125

7

34

6

8

13

5238

Figure 8.3 An Example of AS relationships

The routing policy is enforced through filter operation using regular expression match,

similar to the real commercial router interface. However, this approach is not very efficient and

hard to optimize for performance. For example, one AS has a routing policy that only exports

routing information of its customers to its peer. Originally this is implemented by putting a list

of all customers in the filter definition, and the filter will check the customer list one by one

when exporting a routing entry. As shown in Figure 8.3, AS 7 has a provider AS 6 and 2 direct

customers AS 13 and AS 34. However, it must list all of its customers, direct or indirect, in its

export filters (Figure 8.4). The overhead is large, for a backbone ISP with thousands of

customers, in the term of both memory consumption and computation.

 Export Filter of AS 7:
 clause [precedence 1
 predicate [
 atom [attribute nhi_path matcher (.*)(8|13|34|38|52)$]
]
 action [primary permit]

Figure 8.4 The Export Filter using the AS list

In practice, the routing policy is enforced through the community attribute. A provider AS

assigns a special community value to all of its customers, which will be associated with all

routing entries created by the customers. Then the provider can check the community valued in

126

export filters and may assign. To mimic this approach, MaSSF implements the community

attributed and add the automatic community check/setup in the maBrite generator.

 Export Filter for AS 7:
 clause [precedence 1

predicate [
 atom [attribute community matcher 7]
]
 action [primary permit
 atom [attribute community type set value 6]
]

Figure 8.5 Export Filter using Community Attribute

The Figure 8.5 is the new export filter configuration of AS 7. The predicate matches all

routing entries with community value 7, which means they are created by its customer ASes.

All matched routing entries can be exported to AS 7’s neighbors, and the community value is

re-set to 6, which is the provider of AS 7. Similarly, AS 6 will use this community value to

enforce its own exporting policies.

Summarizing our Internet BGP simulation, we first exploit the scalability of MaSSF to

directly simulate the real Internet AS-level topology. This enables the direct comparison of

simulation results to real Internet, which is never conducted before. Then we convert the

inferred AS relationship to BGP routing configuration and enhance it with real BGP routing

table.

8.1.3 Simulation Results

From the BGP routing table dumped at May 11, 2004, current Internet has about 17,000

ASes and this generated network is simulated on a cluster with 60 Itinum-2 nodes.

There are many metrics can be used to evaluate how close is the simulated network to the

real Internet. For examples:

1) Routing paths of single-prefix-origination AS:

127

For a given studied prefix, we compare the routing paths generated by simulation and paths

observed at various BGP routers. Routing paths are influenced largely by routing decision

algorithm and policy. So by comparing paths, we can do reality check on the simulation code

and policy configuration. We will first study prefixes which are originated by single-prefix-

origination ASes. In real Internet, we can get the routing paths to these prefixes from multiple

BGP observe pointers. These paths are directly comparable to simulation results. By calculating

the percentage of simulated routing paths which are exactly the same, one hop difference, and

two hops difference, we can evaluate the reality of our routing configuration and simulation.

2) Routing paths of multiple-prefix-origination AS:

ASes which are originating multiple prefixes are not considered in the previous case.

Because for those prefixes, there may be different policies applied to them. Those policies are

purely a local decision which is not available to us. Thus it is much harder to compare

simulation results and observed behavior of those prefixes.

3) Routing Dynamics:

In real world, researchers have set Beacon prefixes, which are brought up and down

periodically. For each routing change of Beacon prefixes, we can observe and collect a set of

triggered updates. We also simulate Beacon prefixes then compare the simulated routing

updates with observed routing updates. More precisely, we compare a) # of updates; b) path

changes; c) convergence time; d) inter-arrival time distribution.

We check the routing paths to all single-prefix-origination ASes at the BGP observation

points. We use totally 44 observation points. The Cumulative Dense Function (CDF) of the

match percentage is shown in Figure 8.6, with the average of 24%. This result is much lower

than our expectation, and now it is meaningless to continue the second and third checks until we

can improve this match percentage.

128

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Match Percentage (%)

C
D

F
of

 M
at

ch
 P

er
ce

nt
ag

e

Figure 8.6 CDF of BGP Routing Table Match Percentage

Checking the simulation result, we find two major reasons for the large gap between the

simulation output and the real Internet routing table.

First, the routing error in BGP is accumulative. Due to the distributed nature of the BGP

protocol, routing decisions are made locally and then propagated to other ASes. Since every

BGP routers only export the best routing chosen by themselves, BGP routers have no global

view of the network. Any decision different to real Internet will be propagated and introduce a

large number of different routes for the other routers.

Second, the selective announcement is the major source of the error, especially in the

medium size ISP networks. Those ISP usually have a few customers AS and multiple providers,

they usually use selective announcement for traffic engineering. As we mentioned above, we

only calculate the preference of the largest prefix and use it to represent the whole AS. This can

lead to a large number of routing decision errors and then propagated to the whole Internet. To

really improve the simulation result, we must figure out how to create multiple prefixes in a

single AS and how to do selective announce automatically in maBrite.

129

8.1.4 Summary

In this study, we exploit the power of scalable network simulation in MaSSF to simulate

real AS-level Internet topology. We also construct the most realistic BGP configuration that has

ever been achieved using inferred AS relationship. This network is simulated by the MaSSF on

a 60-node cluster. We report our experimental results by comparing the simulation results

directly to real routing data. Results show there is a significant gap between simulation results

and real data, which warrants further investigation. Results show 1/4 match. As we show above,

this is mainly due the accumulative error of BGP and selective announcement. While we cannot

do much on the first issue, the later can be mitigate by supporting multiple prefixes in an AS

and advanced routing configuration support in maBrite.

8.2 Empirical Study of Tolerating DOS Attacks with a Proxy

Network

Denial-of-Service (DoS) attacks are a continuing key threat to Internet applications. In such

attacks, especially distributed DoS attacks, a set of attackers generates a huge amount of traffic,

saturating the victim’s network and causing significant damage. Proxy networks have been

proposed to protect applications from Denial-of-Service (DoS) attacks. However because large-

scale study in real networks is infeasible and most previous simulations have failed to capture

detailed network behavior, the DoS resilience and performance implications of such use are not

well understood in large networks. While post-mortems of actual large-scale attacks are useful,

only limited dynamic behavior can be understood from these single instances.

Our work exploits the unique capability of the MicroGrid, a detailed large-scale online

network simulator, to study proxy networks with real applications and real DoS attacks.

MicroGrid supports detailed packet-level simulation of large networks and use of unmodified

applications. With MicroGrid, we are able to make detailed performance studies in large

130

networks environment with complex, typical application packages and real attack software. Our

studies include networks with up to 10,000 routers and 40 Autonomous Systems (ASes) with a

physical extent comparable to the North American continent. We believe this is the first

empirical study of proxy networks for DoS resilience at large-scale, using real attacks, and in a

realistic environment.

8.2.1 Background

8.2.1.1. Distributed Denial-of-Service Attacks

Denial-of-Service (DoS) attacks have been a major security threat to typical Internet

applications[86-88], in which a central server provide services to a large number of users widely

distributed in the Internet. In a DoS attack, attackers consume scarce resource which

applications depend on, making the applications unavailable to their users.

There are two classes of DoS attacks: infrastructure-level and application-level attacks.

Infrastructure-level attacks directly attack the service infrastructure, such as the network and the

hosts of the application services, for example, by sending floods of network traffic to saturate

the network of the application services. On the other hand, application-level attacks denial-of-

service applications by exploiting weakness in application-level protocols, for example, by

overloading application services with abusive workload or by sending malicious requests

causing application services to crash.

Infrastructure-level attacks only require the knowledge of applications’ network address, i.e.

IP address. Meanwhile, application-level attacks are tightly-coupled with application-level

protocols and do not require applications’ IP addresses.

Distributed Denial-of-Service (DDoS) attacks are large scale DoS attacks, which typically

involves a large number of “zombies”. There are two stages in such attacks. First, attackers

build zombie networks by compromising Internet hosts and installing zombie programs.

131

Second, attackers control the zombies to DoS the victim. Both infrastructure and application-

level DoS attacks can be used in the second stage. Automated DDoS toolkits, such as

Trinoo[89], TFN2k and mstream [90], and worms, such as CodeRed [91, 92], have been used

for automation, enabling large scale attacks.

Our study focuses on distributed infrastructure-level DoS attacks.

8.2.1.2. Proxy Network Approach

Internet

Application

Attackers

Proxy Network

Users

edge proxy
proxy

Figure 8.7 DoS-Tolerant Proxy Network

Overlay networks have been used to protect applications from DoS attacks [93-97]. Figure

 8.7 shows a generic proxy network encompassing most of the proposed approaches. It shows a

conceptual view of the proxy network from two perspectives. Proxies run on a resource pool

with a large number of interconnected hosts, e.g. Internet hosts; proxies and applications form

an overlay network by having logical connections tunneling application-level traffic among

proxy nodes. The essence of the proxy network approach is to allow communication between

users and applications without revealing the applications’ low-level network address, e.g. IP

address. Applications do not publish their own IP addresses. Instead the addresses of a number

132

of edge proxies are published, and these proxies are used to communicate (via other proxies)

with the application.

Since only application level traffic is delivered inside the proxy network, once an

application’s low-level network address is hidden from attackers, direct infrastructure DoS

attacks on the application are avoided. Furthermore, the proxy network is widely distributed in

the network and highly redundant, so that it is DoS-resilient and it can shield the applications

from DoS attacks.

8.2.2 Problem Definition and Approach

8.2.2.1. Problem

We have little understanding of the performance or effectiveness of proxy networks to

provide DoS resilience in large-scale realistic networks. To date, studies of these problems have

been limited to theoretical analysis and small-scale experiments. They cannot capture real

complex network structures, real temporal and feedback behavior of network and application

protocols, and detailed network dynamics, such as router queuing and individual packet drops.

All these have important impact on system performance.

Thus, we still do not have answers to many key questions about the viability and properties

of these proxy approaches.

1) With real complex network structures and protocol behavior, can proxy networks tolerate

DoS attacks? In particular, in large realistic networks, under various attack scenarios, how

much can proxy networks mitigate the impact of DoS attacks on users’ experienced

performance? What are the key parameters to achieve effective and efficient resilience? How

does this capability scale up when proxy networks grow in size?

2) What are the basic performance implications of proxy networks? How do they affect

users’ experienced performance for real applications in large-scale realistic networks?

133

8.2.2.2. Challenges

To answer these questions, network simulation is necessary, since you cannot do large-scale

DOS experiments on real Internet and or a small testbed. However, simulation for DOS attacks

presents large challenges on the capability of network simulator.

First, the network simulator must be scalable to support simulation of large network with

huge DOS traffic. To make the study results applicable to real Internet environment, the proxy

network should be large enough. Also, this proxy network should be widely distributed in the

network, and it presents a requirement on number of routers in the simulated network. Besides

the large network size, we also expect the large DOS traffic from the attacking module. Since

the basic approach for DOS attack is to saturate the network link, we expect the traffic of a few

Gbps attacking traffic in the simulated network.

Second, it requires low level details to understand the attacking effect on applications

performance. For example, the slow-start effect of TCP congestion window control, the AIMD

policy on packet drop, and even the jitter due to the router queuing delays will greatly affect the

proxy network and application’s performance. Without this packet level detailed network

simulation, it is impossible to study these behaviors. Because DoS attacks exercise extreme

points of network behavior, correct modeling of such detail is important for realistic studies. In

this context, we study the performance and DoS resilience of the generic proxy network

approach.

Third, it is important to model real temporal and feedback behavior of network and

application protocols and their interaction with other network traffic. This is difficult without

online network simulation capability. Online network simulation can also help to capture the

subtle details in the proxy network implementation, which is quite important to the final

performance of the application.

134

Due to these challenges, there are no solid answers to the questions above. Existing network

simulator are either limited in scalability or in the simulation details.

8.2.2.3. Approach

MicroGrid enables us to study these problems in a straightforward way, which cannot be

easily achieved before. MicroGrid creates an Internet-like large-scale virtual network

environment, and allows unmodified applications running on it. We built a proxy network

prototype and deployed it along with a real application and real user programs into the

MicroGrid virtual environment. We build a large zombie network in the virtual environment

running a real DDoS toolkit to generate attack traffic. This allows us to do controlled

experiments with different proxy network configurations and different attack scenarios, and

study the questions above.

Details of our approach include:

1) Use of a large-scale, high-fidelity packet-level online network simulator –

MicroGrid – to simulate large-scale realistic network environment, which include

up to 10,000 routers and 40 ASes comparable to the size of large ISPs.

2) A real proxy network implementation and real applications deployed together in

the MicroGrid virtual environment.

3) A large zombie network of 100 zombies and a real distributed DoS toolkit to

generate attack traffic. It supports controlled experiments with various attack

scenarios.

4) A tree proxy network topology, rooted at the application with edge proxies at the

leaves providing user access. The number of edge proxies is the width of the tree,

and the number of hops from root to leaves is the height. For a localized

135

application implementation, the tree corresponds to subset of links that would be

exercised in all proxy networks.

5) Systematic study of a range of attacks, proxy network configurations, application,

and resilience strategies.

We systematically study users’ experienced performance using a range of proxy network

topologies to understand the basic performance impacts of proxy networks; then we generate a

range of attack scenarios with different attack magnitude and distribution, and systematically

study their impact on users’ experienced performance with proxy networks of different sizes to

understand proxy networks’ DoS-resilience capabilities and scalability.

8.2.3 Experimental Environment

8.2.3.1. Software Environment

There are four software components used in the experiments: a proxy network prototype

implementation, apache web server as the application, a web testing tool “siege” to simulate

user access, and a DDoS attack tool “Trinoo”.

1) Proxy Network Prototype Implementation

The proxy network is a generic overlay network composed of proxy nodes. It can be

configured to support any topology and extended to support any routing algorithm. Proxy

nodes have unique identifiers, and act as routers. Each pair of neighboring proxies maintains a

TCP connection. When a proxy starts, it connects to its neighboring proxies according to the

specified topology information and some bootstrap location information of their neighbors.

Messages can be routed inside the proxy network following any given routing algorithm.

136

Proxy
Network

Application

User

Edge Proxy Internal Proxy

App Proxy

Topology Spec Routing
Algorithm

Figure 8.8 Generic Proxy Network Prototype

The proxy network supports all TCP applications transparently. We use the DNS scheme

used by content delivery networks [98] to direct user access to proxies.

As shown in Figure 8.8, edge proxies listen to user connection requests, and encode

application traffic into messages which are routed via the proxy network to the application. At

the exit of the proxy network, application proxies (proxies that directly connect to the

application) decode the messages, establish new connections to the application if necessary, and

send the data to the application. The TCP connections among proxies are persistent and shared

among users.

2) Application Service

We use Apache web server as a representative application front-end. Since we focus on the

network impact of DoS attacks, specific details of the application logic at the back-end are not

critical. Here we use Apache server to serve files of different sizes as a representative scenario.

3) User Simulator

We use siege – a web test toolkit – to generate user requests. Siege can generate web

requests based on a list of URLs and measure the response time for each of the requests. This

allows us to simulate user access and collect statistics which characterize user experienced

performance.

4) DDoS Attack Toolkit

137

The attack tool used in experiments is the simTrinoo, which is a simulation module in

MaSSF to mimic the behavior of the Trinoo attack tool. Based on two concerns, we do not use

the real Trinoo program directly. First, due to the huge traffic created by attackers, the overhead

of using Trinoo is quite large, especially in the Agent module of the simulator, which accepts

and dispatches requests inside the simulator. It will affect the scalability of the whole system.

Second, the logic of the Trinoo is so simple that we can easily reproduce the same traffic pattern

inside the simulator using a traffic generator. Comparing to the simTrinoo, it will not bring any

benefits to the accuracy of our simulation results.

Just like the Trinoo program, each simTrinoo attacker maintains a list of victims.

Periodically, it randomly picks up one victim and sends out UDP attacking packets to it. By

controlling the sleep between every two attacks and setting the victim list on every attacker, we

can control the attacking traffic enforced on each proxy node.

8.2.3.2. Simulation Setup

The proxy network, apache server, siege programs and simTrinoo attackers are deployed in

the MicroGrid simulated network environment. The maBrite topology generator is used to

generate Internet-like Power-Law network topologies. We use two virtual networks in our

experiments. One includes 1000 routers and 20 ASes, and the other includes 10,000 routers and

40 ASes, which is comparable to the size of a large ISP network. Both networks span a

geographic area of 5000 miles by 5000 miles, which is roughly the size of the North American

continent. This physical extent determines link latencies. OSPF routing is used inside ASes,

and BGP4 is used for inter-AS routing.

Our network simulator is running on an 8-node dual 2.4GHz Xeon Linux cluster with 1G

main memory each, connected by a 1Gbps Ethernet switch. The proxy and siege processes are

138

running on another 24-node dual 450MHz PII Linux cluster with 1G main memory each,

connected by a 100Mbps Ethernet switch. These 2 clusters are connected with a 1Gbps link.

8.2.4 Experiments and Results

To answer the questions stated in Section 8.2.2, we conducted three sets of experiments:

proxy network performance evaluation, proxy network resilience against DDoS attacks using

simple redundancy schemes and proxy network resilience using fail over schemes.

8.2.4.1. Proxy Network Performance

To understand the performance implication of the proxy network approach, we compare the

user-observed service performance between the case where users directly access the application

and the case where a proxy network is used. We use a sample of 100 users randomly chosen

from the simulated network described in Section 8.2.3. Users choose edge proxies based on

proximity.

We use a simple heuristic to deploy a proxy network. Edge proxies are uniformly

distributed in the simulated network. Application proxies are placed on hosts physically close

to where the application service is. All the other proxies are evenly distributed between edge

proxies and application proxies. This heuristic tries to align a proxy network to the underlying

network to avoid long detours in overlay routes. It is straightforward to implement this heuristic

for proxy networks whose topology is a tree, which is the case used in our experiments.

Figure 8.10 shows the results for a tree-topology proxy network with about 200 proxies, 64

of which are edge proxies. The X-axis is the response time for a user to download a given size

file (1.5KB or 100KB) either directly from the application service or via the proxy network.

The Y-axis is the Cumulative Density Function (CDF) of user-observed response time over the

user population.

139

Proxy
Network

Application

User

Figure 8.9 Direct Access vs. Proxy Network

Surprisingly the proxy network greatly improves performance. For small requests (e.g.

1.5K), the 50-percentile response time is reduced by half, and for medium size requests (e.g.

100K), the improvement is even more significant. However, the performance gap between the

two cases becomes smaller for large files (e.g. >1MB). There are two main reasons for this:

First, proxy network improves connection set up time. As shown in Figure 8.9, there are

established TCP connections among proxies. For each virtual connection between a user and

the application, instead of establishing a long TCP connection between the user and the

application, two shorter TCP connections are established: a connection from the user to the edge

proxy it uses and a connection from the corresponding application proxy to the application.

Both of these are short connections, because application proxies are close to the application

service, and users choose edge proxies based on proximity. Second, the TCP connections

among proxies are persistent, and in most cases the TCP congestion windows for those

connections have already been fully opened. It no longer needs TCP slow start phase to grow

the congestion window over multiple round trips to complete a data transfer. For medium size

requests (e.g. 100KB shown in Figure 8.10), this effect is most prominent.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (seconds)

C
D

F
O

ve
r U

se
r P

op
ul

at
io

n

Performance Implication of ProxyNetwork (1.5KB file, mean)

W/O Proxy Network
W/ Proxy Network

140

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (seconds)
C

D
F

O
ve

r U
se

r P
op

ul
at

io
n

Performance Implication of ProxyNetwork (100KB file, mean)

W/O Proxy Network
W/ Proxy Network

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (seconds)

C
D

F
O

ve
r U

se
r P

op
ul

at
io

n

Performance Implication of Proxy Network (1MB file)

 Direct Application Access
Access via Proxy Network

Figure 8.10 Proxy Network Performance Implication

For these reasons, having a proxy network can potentially improve the user-observed

application performance, and the following principles should be considered in the deployment

of proxy networks. Each overlay hop (i.e. RTT between neighboring proxies) should be kept as

short as possible. Edge proxies should be widely distributed to be close to users, and

application proxies should be put close to the application.

In this experiment, the online simulation capability of the MicroGrid enable use to study the

application performance directly in large networks. The packet level detailed simulation in the

MicroGrid is also critical to capture the application performance, which depends the accurate

modeling of TCP hand-shaking and slow-start.

141

8.2.4.2. DoS-Resilience of Proxy Networks

To explore the DoS-resilience capability of proxy networks, we study user-experienced

performance under a range of attack scenarios with or without proxy networks. We use the

same proxy network, which contains 192 proxies (64 edge proxies), in the simulated network

with 20 ASes and 1000 routers. In addition, we constructed a DDoS network, which contains

100 Trinoo daemons randomly distributed in the network.

 Our first experiment explores whether a proxy network can really protect an application

from DoS attacks. Our second experiment studies the DoS-resilience capability of the proxy

network under two large-scale attack scenarios: spreading DoS attacks where attack load is

distributed evenly on all the edge proxies and concentrated DoS attacks where attack load is

concentrated on a subset of edge proxies to saturate their incoming links. Our final experiment

studies the scalability of proxy networks with respect to DoS-resilience, by varying the size and

width of proxy networks.

1) Can a proxy network protect applications?

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (seconds)

C
D
F

O
ve

r U
se

r P
op

ul
at

io
n

Effectiveness of Proxy Networks

no attack (with proxies)
no attack (direct application access)
250Mbps attack (with proxies)
250Mbps attack (direct application access)

Direct App Access, No Attack

Figure 8.11 DOS-Resilience of Proxy Network

We compare the impact of a DoS attack cast on the application and the proxy network. In

our experimental setting, the application service is connected by a 250Mbps link, and each edge

proxy is connected by a 100 Mbps link. Figure 8.11 shows the CDF for user-observed service

response time of 100KB request size in scenarios with or without a proxy network. The results

142

show that a 250Mbps attack on the application significantly increases service response time

(about 10x) and the application becomes unusable. However, when a proxy network is used,

the attack has no observable impact on the user experienced performance. The reason is

straightforward. By having a collection of edge proxies to dilute the impact of attack, a proxy

network has a greater capacity than the application, thereby not as easily being saturated.

2) How large an attack can a proxy network resist?

To investigate how well a proxy network can tolerate DoS attacks, we launch both

spreading and concentrate DoS attacks on the proxy network described in Section 8.2.3, which

has 64 edge proxies and 192 proxies in total. Each of the edge proxy has a 100Mbps uplink. In

both cases, we vary the aggregated attack magnitude from 3.2Gbps to 6.4Gbps. In this

experiment, users do not switch proxies during attacks.

In the case of spreading DoS attacks, Figure 8.12 shows that when attack magnitude is no

more than 6.0Gbps (recall that the aggregated uplink capacity for all the edge proxies is

6.4Gbps), more than 95% of the users observe no significant performance degradation --the

DoS attack has been successfully tolerated. The reason for this is that the edge proxies

successfully dilute attack, and even under heavy attack loads, most of the edge proxies still have

sufficient capacity left to serve user requests. Figure 8.12 also shows that when attack load

reaches 6.4Gbps, all the edge proxies are saturated, significant performance degradation occurs

for all users.

143

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (seconds)

C
D

F
O

ve
r U

se
r P

op
ul

at
io

n

Spreading Attack, 64-Edge Proxy Network (100KB Request)

proxy network, no attack
3.2 Gbps Attack
6.0 Gbps Attack
6.4 Gbps Attack

Figure 8.12 Redundancy to Spreading DoS Attack

Internet

Edge proxy A

OC3 uplink

Edge proxy B

User

Attack Traffic

Attack Traffic

Figure 8.13 Correlation among Proxies and Users

More interesting, we can see large performance degradation for a small fraction of users

(<5%) when the attack magnitude is 6.0Gbps. It is due to the correlation among proxies and

users (see Figure 8.13). Two edge proxies A and B share an uplink of OC3 (155Mbps). Before

attack traffic saturates both proxies’ local links (100Mbps), the shared OC3 link gets congested

first. Therefore, users who use these two proxies and users who are in the same network as

these proxies will be affected. This effect limits the effectiveness of proxy network. Thanks to

the accurate simulation of the MicroGrid even under heavy traffic, we can capture this

phenomenon in the simulation.

Figure 8.14 shows the case of concentrate attacks, where attack load is concentrated on a

subset of proxies. In this case, attack traffic saturates part of the proxy network and a

144

significant percentage of users are affected due to congestion and packet loss. This effect is

more prominent when attack load is higher than the proxies’ capacity (e.g. 4.0Gbps attack on 32

proxies).

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (seconds)

C
D
F

O
ve

r U
se

r P
op

ul
at

io
n

Concentrate Attack (100KB Request Size)

no attack
3.2 Gbps Attack on 32 Proxies
4.0 Gbps Attack on 32 Proxies
6.0 Gbps Attack on 48 Proxies
6.0 Gbps Attack on 60 Proxies

Figure 8.14 Resilience to Concentrate DoS Attack

We observe that parts of the proxy network are not under direct DoS attacks; therefore if

users can switch to edge proxies not being attacked, the performance can be potentially

improved. We repeat the concentrate DoS attack experiment, and let users switch to the closest

proxy not being saturated. Figure 8.15 shows the CDF of user-observed performance.

Compared with Figure 8.14, the performance has been significantly improved. For comparison,

Figure 8.15 also plots the baseline case where users directly access the application without

attack traffic. It shows that even under high attack load (e.g. 6.0Gbps) the proxy network can

still maintain slightly better performance than direct application access without attacks for most

users. Therefore proxy networks can effectively resist DoS attacks.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (seconds)

C
D
F

O
ve

r U
se

r P
op

ul
at

io
n

Performance Implication of Proxy Network (100KB file)

no attack with proxy network
3.2 Gbps Attack on 32 Proxies
4.0 Gbps Attack on 32 Proxies
6.0 Gbps Attack on 48 Proxies
6.0 Gbps Attack on 60 Proxies
Direct Application Access

No Attack, direct application access

Figure 8.15 Resilience to Concentrate DoS Attacks with Proxy Switching

145

This experiment demonstrate the capability of the MicroGrid to simulate large network

accurately even under heavy traffic. With 6.4Gbps attacking traffic and average 15 hops per

stream, we are simulating a 1000 routers network with about 100Gbps traffic flowing in the

network.

3) How does proxy network size affect DoS-resilience?

Finally, we explore how varying the size (width) of the proxy network affects DoS

resilience. This is an important scaling property of the proxy network, showing how effective

we can resist larger scale DoS attacks by building larger proxy networks. The goal of our

experiment is to evaluate the amount of attack load proxy networks can withstand for a range of

proxy network widths. It is hard to directly measure the maximum attack load a proxy network

can tolerate. Instead, we set the attack magnitude to be 95% of the proxy network’s capacity,

and measure the user-observed performance. We define the capacity of a proxy network to be

the sum of the link capacity of its edge proxies. For example, if the proxy network has 16 edge

proxies and each edge proxy has a 100 Mbps uplink, then its capacity is 1.6Gbps and the

aggregated attack magnitude is 1.52Gbps.

Proxy network scaling results are shown in Figure 8.16. The X-axis is the number of edge

proxies in the proxy network (they all have height 3), and the Y-axis is the user-experienced

service response time for a certain percentile of users. We can see that for up to 95 percent

users, the curves stay horizontal and less than 2 seconds (recall from Section 8.2.4.1 that the 95

percentile performance for direct application access without attacks is 2 seconds). If we define

95% users not being affected by DoS attacks as successful DoS resilience, then the amount of

attack traffic can be tolerated grows linearly with the size of the proxy network.

146

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Edge Proxies

U
se

r E
xp

er
ie
nc

ed
 R

es
po

ns
e

Ti
m

e
(S

ec
on

ds
)

90 Percentile
92 Percentile
95 Percentile
97 Percentile

Figure 8.16 Resilience and Proxy Network Size

This experiment is a good demonstration of the flexibility of the MicroGrid resource

configuration. It can easily construct proxy networks and deploy them to the virtual network.

With the MicroGrid, it is possible to study various network configuration and application

scenario under controlled environment.

8.2.5 Conclusion

Our work provides the first detailed and broad study of DoS resilience with proxy network

in large-scale realistic networks. The key is that we exploit the unique capability of the

MicroGrid to simulate a realistic large-scale network (comparable to several large ISPs). We

use a generic proxy network and deploy it in a large simulated network using typical real

applications and DoS tools directly. We study detailed system dynamics under various attack

scenarios and proxy network configurations. The major conclusion is that, in realistic large

network environments, proxy networks can have great performance potential and scalable DoS-

resilience capability. It is a promising approach to DoS defense. These experiments and the

conclusion are not possible without the scalable, accurate online simulation provided by the

MicroGrid.

147

8.3 Summary

In this chapter, the MicroGrid toolkit is successfully used on two real network related

studies, none of them is possible without the MicroGrid. These experiments demonstrate the

unique capabilities of the MicroGrid which are critical to the success, including:

1) Scalability. This is required by the simulation of the whole Internet AS-level topology

and large attack traffics.

2) Accurate and detailed simulation. The DoS study of proxy network requires very detailed

network modeling, including TCP slow start, TCP AIMD congestion control, and router

queuing and dropping.

3) Online simulation capability. The proxy network evaluation is not possible without the

online simulation capability. Furthermore, our online simulation helps us to detect and fix a

batch bugs in the proxy network implementation.

4) Flexible on virtual grid configuration. The DOS study experiments require flexible

deployment of a large number of proxy and user hosts.

148

Chapter 9 Related Work

In this chapter, we discuss the most related work, current research on network emulation for

application performance studies. Those are all interesting because they are quite similar to our

approach in supporting direct execution of applications. However, there is still a major

difference between them and the approach used in the MicroGrid, and we want to point them

out clearly. In Section 2.1 we have discussed other related work in application performance

modeling.

We will briefly describe their approaches in Section 9.1 and compare them to the MicroGrid

in Section 9.2. Then we will summarize the difference at Section 9.3.

9.1 Network Emulation Projects

Several recent research efforts are most similar to the MicroGrid, including ModelNet [35],

Netbed [36], Maya[99], and Albatross [100].

9.1.1 ModelNet

The ModelNet [35] project at Duke University (and now at UCSD) is a software emulation

environment on a cluster. The ModelNet simplifies network topology as a network of pipes,

calculates the shortest-path routing, and then maps the resulting network of queues onto a set of

emulation cores. Network IP packets from real applications running on end hosts will be routed

through one or more cores. The core will subject each packet to delay, bandwidth, and loss

characteristics, according to the target topology. ModelNet moves packet hop-by-hop in the

topology and each hop is represented by a pipe with a packet queue. Whenever a packet enters a

149

pipe queue, the emulator will calculate the queuing and link delay and forward the packet to the

next hop, after desirable delay, if it is not dropped due to a queue overflow, randomized loss, or

a RED policy. Thus ModelNet can track the effects of congestion and competition among

competing packets.

Key differences to the MicroGrid include:

1) The MicroGrid models real network entities and their behaviors, while the ModelNet

simplifies them to pipes and queues. In the MicroGrid, every router has fully

functional Network Interface Cards (NIC), packet buffer queue, and protocol stack of

IP, TCP, OSPF or BGP. Thus it is easy for the MicroGrid to incorporate detailed

routing configuration and make dynamic routing selection as in the real Internet. The

ModelNet, however, has to load a pre-calculated routing path at the emulation startup

time, lookup the static routing path for every packet entering the emulators, and then

move it through all hops in that path. While this approach reduces the simulation

overhead greatly, it is not easy to implement dynamic routing without major

modification.

2) The MicroGrid supports scaling of all resources and performance ratio precisely, while

the ModelNet must follow the real-time emulation requirement and has no modeling of

computation resources. This difference gives the MicroGrid more flexibility in

simulating various, and even future, network and resources speed and ratio.

3) The MicroGrid uses advanced load balance and scaled real-time execution for

scalability, while the ModelNet mainly counts on approximation and some load

balance improvement. The Distill phase in ModelNet transfers an original network

topology into a network of pipes, and it can simplify the network, if the emulator is not

fast enough to keep up the real-time execution, trading accuracy for reduced emulation

cost. In contrast, the MicroGrid uses full-scale detailed packet-level simulation based

150

on a distributed discrete-event simulation engine. As for the load balance problem,

ModelNet[101] uses the greedy k-cluster algorithm: for k nodes in the core set,

randomly selects k nodes in the virtual topology and greedily selects links from the

current, connected component in a round-robin fashion. They also use an approach

similar to the MicroGrid PLACE mapping, but it is focused on minimizing Network

traffic between cores. While there are continued improvement on scaling and

possibility of emulating a 10,000 nodes network[102], the largest emulation on

ModelNet we know has 4000 virtual nodes running on 9 cores [101].

4) The MicroGrid has higher cost on simulating every packet movement, but it can be

used on publicly shared general Linux cluster systems, while the ModelNet required

dedicated customized FreeBSD clusters. This may seem to be a trivial user interface

issue, but it has a big impact in practice; since users of the MicroGrid can do much

larger scale simulation on publicly shared large cluster systems (such as TeraGrid[2]).

9.1.2 Netbed/Emulab

The Netbed/Emulab [36] project, developed at Utah University, uses a set of real routers,

switches and configurable software routers to emulate wide area network. Netbed can also

integrate simulation, wide-area network testbeds, and emulation into a common framework.

This framework provides abstractions, services, and namespaces common to all, such as

allocation and naming of nodes and links. By mapping the abstractions into domain-specific

mechanisms and internal names, Netbed masks much of the heterogeneity of the three

approaches. The Netbed users can benefit from choosing appropriate modeling approaches for

their special requirements, even in a single simulation experiment.

Key differences to the MicroGrid include:

151

1) Netbed requires real-time emulation, which has the benefit of quick simulation. At the

same time, the real-time execution requirement is also a limit on scalability. The

MicroGrid uses scaled real-time execution and can achieve better scalability with the

cost of slower simulation.

2) Netbed also provides little to the experiment designer in the way of detailed control of

resource speed and modeling. Regardless how many resources are dedicated in the

Netbed resource pool, the resource type and number are still limited, when compared to

possible virtual network configurations. The user has to select and configure whatever

available physical resources to approximate the target virtual network, which will lead

to possible inaccuracy. In practice, Netbed's assign [103] automatically maps virtual

topologies which include endpoint resources, as well as network structures, onto a

heterogeneous combination of routers, switches, and computers. In contrast, the

MicroGrid provides accurate resource modeling, and has no inaccuracy introduced by

this kind of approximation.

3) Netbed provides no load balance solution. While the assign automatically chooses

specific endpoint and network resources to optimize their quantity subject to the

constraints, load balance is not its direct focus. Instead, the MicroGrid provides

advanced load balance mechanism for better scalability.

4) The scalability is also limited by the available physical resources in the Netbed resource

pool. The largest automatically-configured Netbed experiment [104] of which we are

aware has 520 virtual nodes (routers) mapped to 44 PCs. The MicroGrid can use any

publicly available Linux cluster systems and conduct much larger scale simulation.

152

9.1.3 Maya

The Maya [99] Project at UCLA also provides a network modeling framework for

emulating distributed applications. Like ModelNet and Emulab, Maya supports direct execution

of applications, and also has the real-time execution requirement.

Key differences to the MicroGrid include:

1) The unique feature of Maya is that it can integrate two disparate modeling approaches

into a unique framework; that is, the discrete-event model and the analytic model. The

analytic model uses the fluid flow based TCP model [21] for network simulation. As

its name suggested, the fluid model treats TCP traffics as fluids, and it derives a set of

ordinary differential equations (ODE) to model the rate of traffic changes and

queuing process at routers. Unlike the discrete-event model, there is no packet or

event in a fluid model; and it only needs to solve the ODE periodically. Thus it can

dramatically reduce the overhead of network simulation. The MicroGrid only uses the

discrete-event model.

2) With cost of fidelity, Maya has the potential to support a very large network

simulation. It is suitable for simulating backbone network with high volume of traffic

for traffic engineering and real-time monitor and control, but it cannot capture the

detailed packet movement, which is critical to application performance. The

MicroGrid, however, does not trade fidelity for scalability. It uses packet-level

detailed simulation to capture all the details of network protocols and router behaviors.

3) While it is shown that speed of fluid flow simulation can support real-time execution

in long term, the periodical invocations of the computation intensive ODE solver

causes the packets to miss their real time deadline repeatedly. This hurts the accuracy

of real-time application emulation and limits its scalability. The largest simulation

they have reported so far is just 60 nodes [99].

153

4) Maya has no support for resources modeling either, which leads to little control on

application execution. The MicroGrid is an integrated simulation framework that

provides simulation for all resource and network components.

9.1.4 Panda in Albatross

The Albatross [100] Project provides programming environments for high-performance

Grid computing. To facilitate investigating the application performance in wide-area networks,

they developed a Panda WAN emulator as part of their communication library. This Panda

WAN emulator works in a way similar to that of the dummynet emulator [33].

Key differences to the MicroGrid include:

1) However, thanks to the tightly couple with the communication library, one unique

feature of the Panda emulator is that it can run parallel applications on a single parallel

machine with only the wide-area links being emulated. The actual emulation of WAN

behavior only models the network delay and bandwidth and cannot catch the network

queuing and congestion status. Like all other emulation projects, it is also limited to

real-time execution, and has no control on computation resources. The MicroGrid,

instead, uses binary interception to redirect all network related functions call to the

simulator. We do not distinguish between local area network and wide area network.

While it is not clear if the accuracy of whole simulation will be affected by not

modeling the local area network, it can definitely reduce the simulation overhead.

2) More accurately, the Panda is not a general network emulator like the MicroGrid, due

to the fact that it does not provide multiplex of multiple virtual machines on a single

physical resource. This makes it quite limited on the resources configuration that it

can emulate. The largest simulation reported is using a 64 nodes cluster to simulate a

154

distributed application with 64 nodes [100]. This is far beyond the scalability of the

MicroGrid system.

9.2 Novelties of the MicroGrid Approach and Capability

While we have mentioned the important differences between these emulation systems and

the MicroGrid above, it is clearer to list all novelties of the MicroGrid approach and capability

together.

First, all of these systems require real-time execution, and the MicroGrid is unique in

providing support for scaled real-time simulation and computation resource modeling. As we

have discussed in Section 5.3, this feature is the base of coordination between multiple

simulation modules, and it can also improve simulation accuracy and scalability. This capability

does not come as an accidence; instead, it requires an implementation of TCP protocol stack in

the network simulator, which is quite labor-intensive and slows down the simulation speed.

With the support of the computation resource simulation discussed in Section 5.2, the

MicroGrid can simulate grid environments with a wide range of heterogeneous resources and

various compute and network speeds ratio. For example, the MicroGrid can accurately simulate

fast network and resources which are still not currently available. Moreover, it can also

accurately simulate various network and resource ratio without the limitation of available

physical resources. None of those features are possible with any of the emulation systems listed

above.

Second, the network modeling in these emulation systems either use approximation models

or have limited scalability. These approximations reduce the cost (compared to the MicroGrid’s

global synchronized simulation) to achieve faster execution. The MicroGrid is unique in that it

uses realistic network topologies, realistic routing protocol, detailed packet level simulation, and

background traffic from aggregated large numbers of traffic flows. The MicroGrid does not

155

make tradeoffs between accuracy and scalability in network simulation, and it tries to provide

the most accurate simulation result possible. With scalable hardware like modern clusters, we

demonstrate that this approach is feasible, even to simulate a large ISP network.

Third, the MicroGrid has the most advanced support for network routing. It uses OSPF for

intra-domain routing and BGP for inter-domain routing. This can help the MicroGrid to provide

realistic network routing selection and dynamic routing reaction under network congestion or

link failure. This is important when studying the application performance under extreme and

unusual conditions. All other projects just use pre-calculated static routing information. For

example, the ModelNet uses pre-calculated shortest routing path based on static network

topology. Static routing has much less overhead in simulation execution, and the routing table

size (not the real emulation yet) can scale to hold a network with about 10,000 nodes[102].

However, it is difficult for those projects to introduce dynamic routing into the simulation.

Fourth, advanced load balance is also a critical feature of the MicroGrid. Load balance is

known to be an important and hard problem for the scalability of distributed network

simulations or emulations; However, there are only a few efforts in network

simulation/emulation community to solve this problem. Many projects, including the Maya and

Albatross, use either manual partitioning or simple graph partitioning based on network

topology. ModelNet[101] uses the greedy k-cluster algorithm: for k nodes in the core set,

randomly selects k nodes in the virtual topology, and greedily selects links from the current

connected component in a round-robin fashion. They also use an approach similar to our

PLACE mapping, but this is focused on minimizing Network traffic between cores. Netbed's

assign [103] maps virtual topologies which include endpoint resources, as well as network

structures, onto a heterogeneous combination of routers, switches, and computers. Critical

issues are time to compute mapping, physical resources used, and sufficient link capacity. Thus,

assign chooses specific endpoint and network resources to optimize their quantity subject to the

156

constraints. Load balance is not a direct focus. During the time of this dissertation writing, we

noticed that the BGP++[105] is also using graph portioning approaches for load balance in its

distributed network simulation.

9.3 Summary

Even with similarity in supporting real application execution, the MicroGrid is

distinguished from other emulation project for goal, accuracy and scalability.

The key difference between MicroGrid and these emulation approaches is the scaled real-

time execution and the more flexible application control. The scaled real-time execution

relieves us from the real-time limitation of emulation, and provides much larger scalability and

accuracy. Since the MicroGrid is an integrated simulation of network and grid resources, it

provides resource modeling and flexible control on application execution. Combined with the

scaled real-time execution, the MicroGrid can study various, even future, hardware speeds and

ratios.

Beside our novel approach for virtual grid modeling, our automatic load balance

mechanisms also provide major scalability advantage over other systems. The realistic packet-

level network simulation with O(104) routers enables accurate grid dynamic study at

unprecedented scale and great opportunities for new insights.

157

Chapter 10 Summary and Future Work

Having presented and evaluated the scaled real-time online simulation and the load balance

algorithms for better scalability, we now summarize our work and list the impact of our work on

simulation research. After that, we enumerate some limitations on our system and possible

directions of future work.

10.1 Summary

The increasing acceptance of grid computing in both scientific and commercial

communities presents significant challenges for understanding the performance of applications

and resources together. The associations between applications and resources are no longer static,

and dynamic resource sharing and application adaptation further complicate the situation.

To meet the emerging modeling needs and to enable growth in understanding the dynamic

properties of grids, we have developed the scaled real-time online simulation mechanism and

implemented it in a toolkit called the MicroGrid. The MicroGrid enables accurate and

comprehensive study of the dynamic interaction of applications, middleware, resource, and

networks. The MicroGrid creates a virtual grid environment – accurately modeling networks,

resources, the information services (resource and network metadata) transparently. Thus, the

MicroGrid enables users, grid researchers, or grid operators to study arbitrary collections of

resources and networks.

Accuracy and scalability are the two major challenges in virtual grid simulation. In

computation resource modeling, we use the soft real-time process scheduling, which can

provide accurate computation resource simulation efficiently. This technique has few

158

requirements; it can be used on any OS that supports POSIX.5 thread system. For network

modeling, we use packet-level online network simulation based on discrete-event simulation

engine, enhanced with OSPF and BGP routing protocols. With the support of transparent live

application traffic interception and the coordination through scaled real-time execution, real

application can be executed directly on a virtual grid environment; both computation and

network behaviors can be modeled accurately. To validate our approach and the MicroGrid

implementation, we present experimental results with applications, showing that the MicroGrid

not only runs real grid applications and middleware, but it accurately models both the

underlying resource and network behavior.

We also study a range of techniques for scaling a critical part of the online network

simulator to the simulation of large networks. These techniques employ a sophisticated graph

partitioner, and a range of edge and node weighting schemes exploiting a range of static

network and dynamic application information. By carefully mapping the virtual network to

physical resources using multi-objective graph partitioning algorithms, we achieve good load

balance and better scalability in network simulation. Our studies show that the static network

topology and application placement information can be exploited to achieve good balance for

some application. These load balance approaches are evaluated against large-scale networks,

including both single-AS network and multi-AS network. The best of these, called hierarchical

profile-based load balance (HPROF), can increase efficiency and scalability by over 100 times,

achieving a parallel efficiency of over 40% on a 90-node cluster for a range of experiments.

This provides a great chance for scalable network simulation. Combining with our packet-level

hop-by-hop network simulator and detailed BGP4 protocol support, we demonstrate that we can

provide realistic large-scale network simulation for networks, including about 20,000 routers,

which is comparable to a large ISP network.

159

To demonstrate the capability of the MicroGrid toolkit, it is used in two network related

research. The first one is the BGP Simulation reality check study, where we use the MicroGrid

to simulate the real Internet AS level topology with detailed BGP routing policy configuration.

The result shows that there is still a big gap between the simulated result and real Internet

routing choices, which warrants further investigation. The second study is on resilience DOS

attacks, using overlay networks. On the virtual grid testbeds provided by the MicroGrid,

experiments show that overlay networks can be used to alleviate the resource level attack

efficiently.

In summary, the MicroGrid toolkit, then our approach for integrated online simulation, has

achieved good scalability and fidelity to study real world large-scale Grid research problems. Its

capability is larger than the simulation requirements of most existing grids, and it is large

enough to model future grids.

10.2 Impact

The coming MicroGrid toolkit represents a big progress in the practice of simulation on

application performance modeling. The large-network simulations at detailed packet-level

provide new capability and chances for deeper insight. The MicroGrid toolkit could be useful

for network and grid researchers, grid administrators, grid designers, and application designers.

For example, beside the BGP reality check and Denial-of-Service attacks in Chapter 8, it can

also be used in the study of:

1) Large-scale behavior of peer-to-peer applications (e.g. Kazaa [106], BitTorrent[107],

Gnutella[108]) in mixed backbone, access, and local area networks.

2) Adaptive applications and rescheduling in controlled Grid resource environment

3) Resource selection, and the impact of competitive resource sharing in large-scale

Grids

160

4) Grid systems performance bottleneck detection and system abnormal diagnose in a

controlled repeatable environments.

This is just short list of direct applications of the MicroGrid. Wide acceptance of the

MicroGrid toolkit will fundamentally change the current practice in network and grid related

research. People will no longer accept any results or conclusions obtained from experiments on

small testbeds or small simulation, with simple dumbbell networks. Instead, they should be

exercised and examined in large-scale detailed virtual grid environment, which is a direct

simulation, comparable to the final target deploy environments. Since the MicroGrid can

provide such virtual grid environment easily, and can be used with direct execution support, this

requirement is reasonable and will not raise large overhead for the researchers. The entire

community will benefit from this practice that will result in more creditable results and more

productive research.

10.3 Limitations

While the MicroGrid represents a big progress in network simulation and grid modeling, it

can be further improved if we can address the following limitations.

First, better understanding of the network itself will further improve the realism of network

simulation. This includes characteristics of Internet network topologies, link latency and

bandwidth distribution, routing configuration, and background traffic. i) Current network

topology generation research mainly focuses on the graph connectivity level, and there are few

research studies on realistic link bandwidth distribution. As we show in our DoS studies in

Section 8.2, realistic link bandwidth is very important to experiments involving large volume of

data transfer, which is quite common for grid applications. ii) Realistic routing and its dynamic

response to network congestion and failure are also critical to grid application performance.

While the MicroGrid provides the dynamic routing capability of OSPF and BGP4, how to get

161

realistic routing configuration is still a pending challenge. Our automatic BGP configuration in

maBrite is just a first step in this direction. iii) There are no realistic background traffic

generation and modeling tools available. Currently in MicroGrid we create a large number of

traffic flows (WWW, TCP, and UDP traffic) randomly distributed in the network, and expect

that the aggregated effect will create reasonable network dynamic similar to real network. While

we believe it partially solves the background traffic issue, the result is not validated; it also

introduces a large volume of traffic and load on simulation. Usually, this load is not of interest

to the user. So a realistic background traffic generation and modeling can greatly improve the

realism of the MicroGrid simulation result; it can also improve the capability for simulating

larger resources and applications.

Second, better application performance model can further improve the capability of the

simulation. The MicroGrid uses direct execution to capture the subtle application details and

temporal interaction between application, middleware, resources and network. This is a good

choice, given the fact that no good application performance model is available. But this

approach also means that we have to run the application directly, consuming the same amount

of memory, storage, and computation power. Even the MicroGrid is scalable in nature and it is

possible to trade the simulation speed for larger experiment; the overall capability is limited by

the available physical resources. The MicroGrid can benefit by better application performance

models which abstract and reduce the real memory and computation requirement without

hurting the accuracy.

Third, better understanding of methodology for extrapolation can improve the capability on

understanding grid dynamics. While we can use the MicroGrid to study a large number of

network topologies, different resource configurations, and multiple application setups, the total

number of possible experiments is still limited when compared to all possible scenarios. We

162

need better understanding on how to extrapolate from a small set of Grid simulations to a much

broader space of network environment and application behavior.

10.4 Future Work

The three limitations listed above are the long term research directions that can

fundamentally improve the overall simulation capability. In the meantime, there are a few

efforts are possible to improve the MicroGrid fidelity and scalability directly.

Due to physical resource limitation, we only use a 128-node cluster in our experiments.

However, it is clear that there is still more parallelism in the large-scale network simulation. In

future work, we will use MicroGrid to study larger networks and application, specifically using

a 256-node Itanium-2 Linux cluster to simulate a network with 100,000 network entities, which

can be taken as a significant fraction of the real Internet with hundreds of ASes. Under this scale

of a network, we expect to experience much larger load balance challenge, and therefore, we

have to develop a traffic-based load balance solution for better scalability. While we selected

the GridNPB benchmarks for our experiments, our evaluation could be improved by studies

with better benchmarks suites or larger real grid applications. In the future, we will also use

MicroGrid to study larger scale real Grid applications, including resources scheduling and

overlay network behaviors.

The soft real-time process scheduler can be further improved, especially for multiple

applications, with computation and communication mixed together. Currently we only

guarantee the CPU quota of a virtual machine, and do not emphasize how the quota is allocated

to all processes on that virtual machine. Fairness is not guaranteed, and there are may be some

processes in starvation that affect the application dramatically. If accuracy is really important,

we may have to investigate other more sophisticated scheduling machinist, such as using hard

real-time scheduler on real-time operating system, or virtual machine monitors.

163

Automatic network mapping and the load balance of distributed network simulation still

remains one of the hardest problems. Load imbalance happens due to burst/variation of traffic

injected from the application. Static partitions are fundamentally limited for large simulation, if

traffic varies widely. Even the hierarchical profile-based partitioning algorithm discussed in

Section 5.4 will not solve the basic problem, especially when the simulation runs for a long time

and the traffic pattern changes dramatically during the simulation. Dynamic remapping of the

virtual network, during the simulation, is the only solution. Such dynamic remapping is a major

challenge for distributed simulators like MaSSF, since it also has a scaled real-time requirement.

164

Appendix A Automatic BGP Configuration

Following the heuristic rules listed in Section 2.3, we automatically configure Internet-like

network topologies with realistic routing configuration, and expect to get a routing pattern

similar to that of the real Internet. The procedure for network topology generation and

automatic routing configuration is shown in the following:

1) Generate AS level topology following the Power Law

2) Classify ASes according connection degrees.

i) Core: ASes with connection degrees of top 2

ii) Stub: ASes with connection degree of 1 or 2

iii) Regional ISP: all the other Ases

3) Decide AS relationships

i) Provider-and-Customer:

a. Core -- Stub,

b. Regional ISP – Stub,

c. Core – Regional ISP

ii) Peer-and-Peer: between all ASes in the same level

4) Setup Import Routing Policy

i) Accept all incoming routes

ii) Set Local Preference according to Next Hop AS, which prefer routes from Customer,

over routes from Peer, and over routes from Provider

5) Setup Export Routing Policy

165

i) To Provider: Export local and Customer routes

ii) To Peer: Export local and Customer routes

iii) To Customer: Export all routes

6) Create topology for every Stub AS

i) Follow the Power Law

ii) Use OSPF routing inside the AS

iii) Use default routing to hosts outside local AS

iv) Pickup default/backup routers for multi-homed Ases

This is just a high level abstract of our implementation in the maBrite topology generator,

which is based on BRITE tool. To create a real functional topology, there are more details that

need to be addressed. For example, in Step 3, we must guarantee that every non-Core AS has a

path including Provider-and-Customer links to a Core AS so that this AS has full connectivity

to the whole network. Furthermore, we should also guarantee that the Core ASes form a clique

as observed for the Dense Cores, and additional links between Core ASes are added when

necessary.

After the AS relationships are defined, the routing policy setup is straightforward. The only

problem is how these policies are expressed in the simulator input Domain Model Language

(DML) file. For a detailed discussion of this, the interested reader is referred to the MicroGrid

user manual.

The last thing we want to emphasize is the default routing embodied in Step 6. It is very

important to use default routing in Stub ASes so the huge external BGP routes need not be

injected into the OSPF routing tables. This approach can reduce the overhead of Stub AS

routers greatly and is widely used in real world practice.

166

Reference
1. EUROGRID: Application Testbed for European GRID

computing.http://www.eurogrid.org/.

2. The TeraGrid Project, http://www.teragrid.org/.http://www.teragrid.org/.

3. Foster, I. and e. al. The Grid2003 Production Grid: Principles and Practice. in Proc.

13th IEEE Intl. Symposium on High Performance Distributed Computing. 2004.

4. Peterson, L., et al. A Blueprint for Introducing Disruptive Technology into the Internet.

in Proceedings of the First ACM Workshop on Hot Topics in Networking (HotNets).

2002.

5. Foster, I. and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure.

1999: Morgan Kaufmann.

6. Grimshaw, A.S., W. A.Wulf, and t.L. Team., The Legion Vision of a Worldwide Virtual

Computer. Communications of the ACM, 1997. 40(1).

7. Thain, D., T. Tannenbaum, and M. Livny, Condor and the Grid, in Grid Computing:

Making The Global Infrastructure a Reality, A.J.G.H. Fran Berman, Geoffrey Fox,

Editor. 2003, John Wiley.

8. Agrawal, S., et al., NetSolve: Past, Present, and Future - A Look at a Grid Enabled

Server, in Grid Computing: Making The Global Infrastructure a Reality, A.a.B. Hey, F.

and Fox, G., editors, Editor. 2003, John Wiley.

9. Berman, F., et al., The GrADS Project: Software Support for High-Level Grid

Application Development. International Journal of High Performance Computing

Applications, 2001. 15(4): p. 327-344.

10. SETI@home: The Search for Extraterrestrial

Intelligence.http://setiathome.ssl.berkeley.edu/.

11. The Great Internet Mersenne Prime Search.http://www.mersenne.org/.

12. Calder, B., et al., The Entropia Virtual Machine for Desktop Grids. 2003, UCSD CSE

13. Larson, S.M., et al., Folding@Home and Genome@Home: Using distributed computing

to tackle previously intractable problems in computational biology, in Computational

Genomics. 2002, Horizon Press.

14. The Era of Grid Computing: Enabling new possibilities for your business. January 2004,

IBM Grid Computing

167

15. Graupner, S., J. Pruyne, and S. Singhal, Making the Utility Data Center a Power

Station for the Enterprise Grid. 2003, HP Labs

16. Sun Powers the Grid: An Overview of Grid Computing from Sun. 2004, Sun Grid

Technology

17. Oracle and The Grid. November 2002

18. IBM Grid Offering for Engineering Design: Clash Analysis in Automotive and

Aerospace. 2004, IBM Grid Computing

19. Final Report on the August 14, 2003, Blackout in the United States and Canada:

Causes and Recommendations, W. U.S. Department of Energy, D.C., Editor. April

2004, U.S.-Canada Power System Outage Task Force

20. Paxson, V. and S. Floyd, Wide-Area Traffic: The Failure of Poisson Modeling.

IEEE/ACM Transactions on Networking, 1995. 3(3): p. 226-244.

21. Misra, V., W. Gong, and D. Towsley. A Fluid-based Analysis of a Network of AQM

Routers Supporting TCP Flows with an Application to RED. in Proceedings of ACM

SIGCOMM'00. 2000. Stockholm, Sweden.

22. Cowie, J., et al. Towards Realistic Million-Node Internet Simulations. in Proceedings of

the 1999 International Conference on Parallel and Distributed Processing Techniques

and Applications (PDPTA'99). 1999. Las Vegas, Nevada.

23. Wolski, R., N. Spring, and J. Hayes, The Network Weather Service: A Distributed

Resource Performance Forecasting Service for Metacomputing. Journal of Future

Generation Computing Systems, 1999. 15(5-6): p. 757-768.

24. Sulistio, A., C.S. Yeo, and R. Buyya, A Taxonomy of Computer-based Simulations and

its Mapping to Parallel and Distributed Systems Simulation Tools. International Journal

of Software: Practice and Experience, 2004. 34(7): p. 653-673.

25. Takefusa, A. Bricks: A performance evaluation system for scheduling algorithms on the

grids. in JSPS Workshop on Applied Information Technology for Science. 2001.

26. Dobre, C.M. and C. Stratan. Monarc Simulation Framework. in Proceedings of the

RoEduNet International Conference. 2004. Timisoara, Romania.

27. Buyya, R. and M. Murshed, GridSim: A Toolkit for the Modeling and Simulation of

Distributed Resource Management and Scheduling for Grid Computing. The Journal of

Concurrency and Computation: Practice and Experience (CCPE), 2002. 14(13-15).

28. Schwetman, H. CSIM: A C-based, process oriented simulation language. in

Proceedings of the 1986 Winter Simulation Conference. 1986.

168

29. Legrand, A., L. Marchal, and H. Casanova. Scheduling Distributed Applications: The

SimGrid Simulation Framework. in Proceedings of the third IEEE International

Symposium on Cluster Computing and the Grid (CCGrid'03). 2003. Tokyo, Japan.

30. Breslau, L., et al., Advances in Network Simulation. IEEE Computer, 2000. 33(5): p.

59-67.

31. Bajaj, L., et al., GloMoSim: A Scalable Network Simulation Environment. May 1999,

UCLA Computer Science Department Technical Report 990027

32. Riley, G.F., R.M. Fujimoto, and M.A. Ammar. A Generic Framework for

Parallelization of Network Simulations. in Proceedings of Seventh International

Symposium on Modeling, Analysis and Simulation of of Computer and

Telecommunication Systems. 1999.

33. Rizzo, L. Dummynet and Forward Error Correction. in Proc. of the 1998 USENIX

Anuual Technical Conf. June 1998. New Orleans, LA: USENIX Association.

34. The ns Manual (formerly ns Notes and Documentation), K. Fall and K. Varadhan,

Editors, UC Berkeley, LBL, USC/ISI, and Xerox PARC

35. Vahdat, A., et al. Scalability and Accuracy in a Large-Scale Network Emulator. in

Proceedings of 5th Symposium on Operating Systems Design and Implementation

(OSDI). December 2002.

36. White, B., et al. An Integrated Experimental Environment for Distributed Systems and

Networks. in Proceedings of 5th Symposium on Operating Systems Design and

Implementation (OSDI). 2002.

37. PlanetLab Website, http://www.planet-lab.org/,

38. Law, A.M. and D. Kelton, Simulation Modelling and Analysis. 1991, New York:

McGraw Hill.

39. Preis, R. and R. Diekmann, PARTY - A Software Library for Graph Partitioning.

Advances in Computational Mechanics with Parallel and Distributed Processing, 1997:

p. 63-71.

40. Pellegrini, F. and J. Roman. SCOTCH: a software package for static mapping by dual

recursive bipartitioning of process and architecture graphs. in High-performance

Computing and Networking, Proc. HPCN'96. 1996. Springer, Berlin.

41. Aiello, W., F. Chung, and L. Lu. A random graph model for massive graphs. in ACM

Symposium on Theory of Computing. 2000.

169

42. Schloegel, K., G. Karypis, and V. Kumar. A New Algorithm for Multi-Objective Graph

Partitioning. in Euro-Par'99 Parallel Processing. 1999. Springer Verlag, Heidelberg.

43. Hendrickson, B. and R. Leland, The Chaco User's Guide: Version 2.0. 1994, Sandia

Tech

44. Walshaw, C., et al. JOSTLE: Partitioning of Unstructured Meshes for Massively

Parallel Machines. in Parallel CFD'94. 1994. Tyoto, Japan.

45. Devine, K., et al. Design of Dynamic Load-Balancing Tools for Parallel Applications.

in 2000. in Proceedings of the International Conference on Supercomputing. 2000.

Santa Fe.

46. Sun Fire Enterprise Servers and the UltraSPARC IV Processor. 2004, Sun

Microsystems.http://www.sun.com/servers.

47. VMWare website.http://www.vmware.com/.

48. Whitaker, A., M. Shaw, and S.D. Gribble. Scale and Performance in the Denali

Isolation Kernel. in Fifth Symposium on Operating System Design and Implementation

(OSDI 2002). 2002. Boston, MA.

49. Barham, P., et al. Xen and the Art of Virtualization. in Nineteenth ACM Symposium on

Operating Systems Principles. 2003. Bolton Landing, NY.

50. Czajkowskiy, K., et al. Grid Information Services for Distributed Resource Sharing. in

Proc. 10th IEEE International Symposium on High Performance Distributed

Computing (HPDC-10). 2001. San Francisco, CA.

51. Comer, D.E., Internetworking With TCP/IP. Third ed. Vol. I. 1995: Prentice Hall.

52. Fujimoto, R.M., Parallel and Distributed Simulation Systems. 2000: Wiley-Interscience.

53. Huang, P., D. Estrin, and J. Heidemann. Enabling Large-scale Simulations: Selective

Abstraction Approach to The Study of Multicast Protocols. in In Proceedings of the

International Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems. 1998. Montreal, Canada: IEEE.

54. Gu, Y., Y. Liu, and D. Towsley. On Integrating Fluid Models with Packet Simulation.

in Infocom 04. 2004. Hong Kong.

55. Garey, M. and D. Johnson., Computers and Intractability: A Guide to the Theory of NP-

Completeness. 1989, W.H. Freeman.

56. Liu, J. and D. Nicol, DaSSF 3.1 User's Manual. 2001.

57. SSFNet Webpage.http://www.ssfnet.org.

170

58. Morris, R., et al. The Click modular router. in Proceedings of SOSP '99. 1999. Kiawah

Island, South Carolina.

59. SSFNet, How to write DML network

models.http://www.ssfnet.org/InternetDocs/ssfnetTutorial-1.html.

60. Fuller, V., RFC 1519 - Classless Inter-Domain Routing (CIDR): an Address

Assignment and Aggregation Strategy. 1993, Network Working Group

61. Moy, J., RFC 2328 - OSPF Version 2. 1998, Ascend Communications, Inc.

62. Rekhter, Y. and T. Li, Border Gateway Protocol 4 (BGP-4), RFC1771, T.J. Watson

Research Center, IBM Corp., Cisco Systems. March 1995.

63. Halabi, S., Internet Routing Architectures. Second Edition ed. 2001: Cisco Press.

64. Karypis, G. and V. Kumar. Multilevel k-way Hypergraph Partitioning. in 36th Design

Automation Conference. 1998.

65. Cisco Systems, NetFlow.

2001.http://www.cisco.com/warp/public/732/netflow/index.html.

66. Liu, X. and A. Chien. Traffic-based Load Balance for Scalable Network Emulation. in

SuperComputing 2003. Noverber 2003. Phoenix, Arizona: the Proceedings of the ACM

Conference on High Performance Computing and Networking.

67. Lakshman, T.V. and U. Madhow, The Performance of TCP/IP for Networks with High

Bandwidth-Delay Products and Random Loss. IFIP Transactions C-26, High

Performance Networking, 1994: p. 135--150.

68. Petitet, A., et al. Numerical Libraries and the Grid: The GrADS Experiment with

ScaLAPACK. in International Journal of High Performance Computing Applications.

2001.

69. Dail, H., F. Berman, and H. Casanova, A Decoupled Scheduling Approach for Grid

Application Development Environments. Journal of Parallel and Distributed Computing,

2003.

70. Sievert, O. and H. Casanova, A Simple MPI Process Swapping Architecture for

Iterative Applications. International Journal of High Performance Computing

Applications (IJHPCA), 2004.

71. FASTA package of sequence comparison programs.ftp://ftp.virginia.edu/pub/fasta.

72. Wijngaart, R.F.V.D. and M. Frumkin, NAS Grid Benchmarks Version 1.0. 2002, NASA

Ames Research

171

Center.http://www.nas.nasa.gov/Research/Reports/Techreports/2002/nas-02-005-

abstract.html.

73. Kumar, V., et al., Introduction to Parallel Computing - Design and Analysis of

Algorithms. 1994: The Benjamin/Cummings Publishing Company.

74. Medina, A., et al. BRITE: An Approach to Universal Topology Generation. in In

Proceedings of the International Workshop on Modeling, Analysis and Simulation of

Computer and Telecommunications Systems- MASCOTS '01. 2001. Cincinnati, Ohio.

75. Faloutsos, M., P. Faloutsos, and C. Faloutsos. On Power-Law Relationships of the

Internet Topology. in SIGCOMM. 1999.

76. Spring, N., R. Mahajan, and D. Wetherall. Measuring ISP Topologies with Rocketfuel.

in ACM SIGCOMM. 2002.

77. Winick, J. and S. Jamin, Inet-3.0: Internet topology generator. 2002, University of

Michigan Ann Arbor

78. Calvert, K.L., M.B. Doar, and E.W. Zegura, Modeling Internet Topology. IEEE

Communications Magazine, June 1997. 36(6): p. 160-168.

79. DaSSFNet Homepage.http://www.cs.dartmouth.edu/~ghyan/dassfnet/overview.htm.

80. Wang, F. and L. Gao. Inferring and Characterizing Internet Routing Policies. in ACM

SIGCOMM Internet Measurement Conference. 2003.

81. Pei, D., et al. Improving BGP Convergence Through Consistency Assertions. in Infocom.

2002. New York: IEEE.

82. Mao, Z.M., et al. Route Flap Damping Exacerbates Internet Routing Convergence. in

SIGCOMM?2. 2002. Pittsburgh, Pennsylvania.

83. Gao, L., On Inferring Automonous System Relationships in the Internet. IEEE/ACM

Transactions on Networking, 2000.

84. Oregon RouteView server.http://www.antc.uoregon.edu/route-views/.

85. Looking Glass servers.http://www.traceroute.org.

86. Fonseca, B., Yahoo outage raises Web concerns.

2000.http://www.nwfusion.com/news/2000/0209yahoo2.html.

87. Williams, M., EBay, Amazon, Buy.com hit by attacks.

2000.http://www.nwfusion.com/news/2000/0209attack.html.

88. Frank, D., Cybersecurity called key to homeland defense. 2001,

FCW.COM.http://www.fcw.com/fcw/articles/2001/1001/news-cyber-10-01-01.asp.

172

89. Dittrich, D., The DoS Project's "trinoo" distributed denial of service attack tool. 1999,

University of Washington.http://staff.washington.edu/dittrich/misc/trinoo.analysis.

90. Dittrich, D., et al., The "mstream" distributed denial of service attack tool.

2000.http://staff.washington.edu/dittrich/misc/mstream.analysis.txt.

91. CERT, "Code Red II:" Another Worm Exploiting Buffer Overflow In IIS Indexing

Service DLL. 2001.http://www.cert.org/incident_notes/IN-2001-09.html.

92. CERT, "Code Red" Worm Exploiting Buffer Overflow In IIS Indexing Service DLL.

2001.http://www.cert.org/incident_notes/IN-2001-08.html.

93. Keromytis, A.D., V. Misra, and D. Rubenstein. SOS: Secure Overlay Services. in ACM

SIGCOMM'02. 2002. Pittsburgh, PA: ACM.

94. Stoica, I., et al. Internet Indirection Infrastructure. in SIGCOMM. 2002. Pittsburge,

Pennsylvania USA.

95. Adkins, D., et al., Towards a More Functional and Secure Network Infrastructure. 2003,

Computer Science Division, UC Berkeley: Berkeley

96. Adkins, D., et al. Taming IP Packet Flooding Attacks. in HotNets-II. 2003.

97. Wang, J., L. Lu, and A.A. Chien. Tolerating Denial-of-Service Attacks Using Overlay

Networks – Impact of Topology. in 2003 ACM Workshop on Survivable and Self-

Regenerative Systems. 2003. Washington DC: ACM.

98. Akamai, Akamai Technology

Overview.http://www.akamai.com/en/html/technology/overview.html.

99. Zhou, J., et al., MAYA: Integrating Hybrid Network Modeling to the Physical World.

ACM Transactions on Modeling and Computer Simulation, 2004. 12(2): p. 149-169.

100. Kielmann, T., et al., Programming Environments for High-Performance Grid

Computing: the Albatross Project. Future Generation Computer Systems, 2002. 18(8).

101. Yocum, K., et al. Toward Scaling Network Emulation using Topology Partitioning. in

Proceedings of the International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS). 2003.

102. Chen, J., et al. Routing in an Internet-Scale Network Emulator. in IEEE/ACM

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS). 2004.

103. Ricci, R., C. Alfeld, and J. Lepreau, A Solver for the Network Testbed Mapping

Problem. 2002, University of Utah Flux Group

173

104. Guruprasad, S., et al. Scaling Network Emulation with Multiplexed Virtual Resources.

in SIGCOMM 2003 Poster Abstract. 2003.

105. Dimitropoulos, X.A. and G.F. Riley. Large-Scale Simulation Models of BGP. in

MASCOTS'04. 2004. Volendam, The Netherlands.

106. Kazaa.http://www.kazaa.com/.

107. Cohen, B., Incentives Build Robustness in BitTorrent. May 22, 2003

108. Adar, E. and B.A. Huberman, Free riding on gnutella. 2000, Xerox PARC

