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ABSTRACT OF THE DISSERTATION 

Scalable Online Simulation for Modeling Grid Dynamics 

by 
Xin Liu 

Doctor of Philosophy in Computer Science 
University of California, San Diego, 2004 

Professor Andrew A. Chien, Chair 
 

Large-scale grids and other federations of distributed resources that aggregate and share 

resources over wide-area networks present major new challenges because they couple the 

behavior of resources and networks.  These infrastructures support a new breed of applications 

which interact dynamically with their resource environment, making it critical to understand 

dynamic application and resource behavior to design for performance, stability, and reliability.  

Coupled use means that accurate study of dynamic applications, middleware, resource, and 

network behavior depends on coordinated, accurate, and simultaneous simulation of all four of 

these elements.  Thus, the long-term challenge is to support scalable, high-fidelity, online 

simulation of applications, middleware, resources, and networks to support enable scientific and 

systematic study of grid applications and environments.  That challenge is the focus of this 

dissertation. 

We define the problems in performing large-scale, high-fidelity, online simulation.  We 

consider a number of approaches, and then present our approach in detail.  Our approach 

includes a set of techniques which enable the use of real application and middleware software, 

and modeling of essentially arbitrary network and resource properties.  These techniques 

include resource virtualization via application interception, computation resource simulation 



 

xvii 

based on soft real-time scheduling, and packet-level online network simulation.  Our studies and 

experiments show that these techniques can support simulation experiments with complex 

software packages as well as resource and network structures.   

 While most of the techniques in our approach are inherently scalable, one major challenge 

is online network simulation – which we implement as a parallel distributed discrete-event 

simulation, well-known to be challenging to scale. A range of techniques for scaling our online 

network are studied.  Exploiting advanced graph partitioners, we explore a range of edge and 

node weighting schemes based on a variety of static network and dynamic application 

information.  While simple approaches do not achieve acceptable load balance, our studies 

show that detailed network structure and behavior can be combined with the graph partitioners 

to achieve both good load balance and parallel efficiency.  For example, our improvements 

increase efficiency and scalability by over 100 times, achieving a parallel efficiency of over 

40% on 90-node clusters for a range of experiments.  

Our online simulation techniques are embedded in a working simulation tool, the MicroGrid, 

which enables accurate and comprehensive study of the dynamic interaction of applications, 

middleware, resource, and networks.  We present experimental results with applications which 

validate the implementation of the MicroGrid, showing that it not only runs real grid 

applications and middleware, but also accurately models underlying resource and network 

behavior. Our scalability experiments show that our load balance algorithms are effective, and 

the best of them, hierarchical profile-driven load balance, scales well, enabling simulation 

networks of 20,000 routers with 90 cluster nodes. This is the largest detailed network simulation 

ever performed, and corresponds in size to a large ISP’s network.  Realistic packet level 

network simulation with tens of thousands of routers enables accurate study of grid and network 

dynamics at unprecedented scale, and we believe great opportunities for new insights. 



 

1 

Chapter 1 Introduction 

1.1 Emergence of Grid Computing 

Increasing network performance, computation power, maturing distributed software 

structures, and the growth of the Internet are enabling the emergence of novel types of 

computation, communication, and resource sharing.  These technical changes mirror an 

increasing trend, in the scientific and commercial worlds towards collaboration and sharing in 

larger and larger communities. Based on the growth and abundance of network connected 

systems and bandwidth, these pools of shared resources, grids, allow geographically distributed 

organizations to share applications, data and computing resources. Within a grid, networked 

resources -- desktops, servers, storage, databases, even scientific instruments -- can be 

combined to deploy massive computing power wherever and whenever it is needed most. Grids 

can also enable dynamic and flexible sharing of data (and thereby information) across diverse 

organizations, with controlled access.  Users can find resources quickly, use them seamlessly, 

and allow resource providers to manage them efficiently.  These emerging grid systems already 

comprise thousands of hosts and terabytes of data, and continue to grow in scale. 

The growth of both deployment and use of grid environments (EuroGrid [1], TeraGrid [2], 

Grid2003 [3], and PlanetLab [4]) is rapid – driven by business pressures to reduce management 

cost and increase resource efficiency, as well as to accelerate the process of designing and 

deploying information technology solutions.  A number of grid middleware projects have been 

developed to enable access to grid resources, such as Globus [5], Legion [6], Condor [7], 

NetSolve [8], and GrADS [9]. Moreover, ranging from a computational project which searches 
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for extraterrestrial intelligence (SETI@home [10]) and other desktop computing examples 

(GIMPS [11], Entropia [12], Folding@Home [13], etc.) to more recent molecular modeling for 

drug design, brain activity analysis, and high energy physics [3], academic researchers have 

been using Grid technology to solve large complex problems that require collaboration of 

multiple organization, including scientific disciplines ranging from high-energy physics to the 

life sciences.  

Today, an increasing number of commercial enterprises are deploying grid technologies 

developed in the scientific research community to improve their utilization of computing 

resources, as well as to provide new capabilities. Essentially,  all major computer software and 

service provider companies, including IBM [14], HP [15], Sun [16] and Oracle [17], have 

adopted grid technologies, and have begun to address the wide range of technology and 

business issues.  Their products offer a range of software toolkits for creating and hosting grid 

services, federating data, describing applications, and mean to provide grid solutions for 

enterprise computing and e-commerce. In fact, grid computing has become a widely adopted 

technology in a number of industries, including life sciences, financial services, energy, and 

aerospace [18].  

While grid technologies aggregate and share resources over wide-area networks to support 

applications at unprecedented levels of scale and performance, they also raise the critical issue 

of grid dynamics. First, grid applications couple network behavior with computation and storage 

devices (end resources). As a result, understanding the behavior of even single applications or 

resources requires integrated study of both networks and end resources.  Second, because grids 

are based on sharing resources, a natural competition for these resources does exist among users.  

With uncontrolled application behavior, computation and network load in the system may vary 

dramatically.  In open grid systems, where users and applications can enter without admission 

control, this competition may be extreme, producing unstable resources and effective denial-of-
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service for applications.  Even at modest load factors, large applications or even malicious users 

may compete for shared resources, affecting the performance of each other greatly. In fact, each 

application may act dynamically in an attempt to improve its performance, but the aggregation 

of these actions may have dramatic adverse impact on overall grid behavior.   

1.2 The Problem 

Understanding grid dynamics and their effect on application performance and grid resources 

is a critical problem. To support grid applications and large-scale grid environments running a 

broad variety of critical commercial, scientific, and societal functions, we must be able to 

engineer resource stability, application performance stability, application quality of service, and 

also efficient resource utilization.  As a community, our current capabilities for such design are 

limited, both in the context of grids and in the larger context of distributed systems.  It is no 

exaggeration to say that our understanding of Internet, distributed application, end resource, and 

grid dynamics is quite limited. 

While research continues apace, current grid middleware systems and environments provide 

only the basic mechanisms needed for execution in a grid.  We have little understanding of how 

to combine dynamic resource allocation, quality of service provisioning, and application 

performance models to achieve a desired design goal of resource stability, application stability, 

predictable behavior, guaranteed quality of service, etc., in an open, shared, efficiently utilized 

grid environment.  Current practice is to evaluate the middleware and applications in a handful 

of small scale grid environments before being released for use in large production grids.  Only 

after some time, based on ad hoc testing and use, is their dynamic behavior under typical 

circumstances understood.  However, even at this point, we have limited understanding of their 

dynamic properties in novel circumstances, such as different resource environments, 

competitive resource demands, or failure modes.  In fact, as evidenced by the 2003 electrical 
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power grid failure [19], understanding of such circumstances is a critical element of risk 

assessment.    Further, we lack the tools to perform such studies either analytically or 

empirically. 

Low-end pervasive or ubiquitous computing systems (i.e. Jini, Windows CE, Cell phone, 

etc.) systems have similar needs.  These applications often depend on open shared resource 

environments, which strive to ensure application quality of service, and are subject to large 

fluctuations in load (which may arise from crowds of devices!).  While the structure of solutions 

for pervasive computing and grid systems may ultimately differ, the simulation and modeling 

needs for coupled network and resource modeling are remarkably similar.   

In brief, understanding the dynamic behavior of grid environments (applications, 

middleware, resources, and networks) remains an open research challenge, and the subsequent 

engineering need to ensure resource stability, application performance stability, application 

quality of service, and also efficient resource utilization remains daunting.  This problem 

motivates us to build empirical tools for characterization described in this dissertation. 

1.3 Insufficiency of  Previous Approaches 

Traditionally, distributed applications and networks have been studied separately – each 

community employing relative simple models for the other domain.  For example, distributed 

systems researchers often use simple latency, bandwidth, and reliability models for networks, 

while networking researchers use application models based on basic web-browsing or other 

simple models of application workloads.  These methodologies have produced significant 

advances, but we are increasingly faced with the reality that a broad range of distributed 

applications are now strongly network dependent, and that their performance depends directly 

on detailed dynamic network properties, such as packet loss, protocol behavior, latency, 

bandwidth, etc.   While significant advances have been made in aggregate modeling of network 
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behavior [20, 21], at present, only detailed packet-level studies, or close analogs, can accurately 

model protocol dynamics, particularly in more extreme cases [22, 23].  At the same time, 

increasingly complex and dynamic applications can have a dramatic impact on networks 

performance; some examples include, peer-to-peer file sharing, viruses such as MyDoom, and 

multi-gigabit stream transfers for scientific applications.  In particular, peer-to-peer file sharing 

and multi-gigabit scientific applications are exemplary of a future generation of applications 

which are highly network performance aware, and subsequently, adapt their behavior--and 

thereby network use--rapidly and drastically, in response to the experienced network 

performance.  These concurrent changes motivate a strong need for integrated simulation and 

modeling of distributed networks.  Further, the increasing complexity and adaptive behavior of 

applications and middleware motivate the use of integrated simulation tools, which enables 

these complex software systems to be used directly – accurate modeling is difficult. 

In summary, traditional approaches are insufficient for accurate modeling of grid 

applications. Using simple network modeling is often inaccurate, and building application 

performance model may be infeasible and may elide subtle, yet critical, performance details. 

We believe that integrated simulation tools, which allow direct use of complex system and 

detailed network modeling, are a most promising practical solution. Real testbeds have a range 

of advantages, but any single real grid is inflexible and limited in scalability, when compared to 

simulation tools.  Furthermore, real testbeds are far more expensive than simulation-based 

approaches. Thus, the rapidly evolving needs of application, middleware, grid, and network 

designers as well as users and operators demand integrated simulation tools.  Without tools that 

integrate resource, network, and software system modeling, accurate study of grid application 

and system dynamics is impossible.   
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1.4 Approach: Online Simulation 

Online Network 
Simulator Resource 

simulator 

Resource
simulator

Resource 
simulator 

Resource
simulator

Virtual Grid 

 

Figure  1.1 Integrated Online Simulation 

Our approach is to develop and design an integrated online simulation system (see Figure 

1.1), which supports direct execution of real applications within a simulated grid environment. 

This system will enable scientific and systematic study of dynamic applications, middleware, 

resources, and network behavior.  Furthermore, it should provide a vehicle for observable, 

repeatable study and systematic exploration of design spaces for a wealth of application and 

middleware design problems, exploration of rare or extreme situations, rational choices in 

application deployment, grid resource allocation, and network design. 

To achieve the goal of integrated online simulation, critical sub-problems include resource 

virtualization, resource modeling, online network simulation, and global coordination, which 

combines the resource modeling modules. There are many challenges and open questions in the 

area. The critical questions are: 

1) How do we support a virtual (simulated) grid environment?  How do we provide 

information services within the virtual grid? 

2) How do we provide this illusion of a virtual grid efficiently?  
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3) How do we provide accurate resource modeling for computation, storage, and network? 

How much fidelity is enough? 

4) How do we provide a scalable online simulation of networks, given large networks with 

bursts of traffic loads, highly distributed applications, and complex dynamic interactions 

between applications, networks and resources? 

5) How do we support multiple simulation modules in a single experiment? 

As we will show in this dissertation, accurate and comprehensive study of the dynamic 

interaction of applications, middleware, resource, and networks is possible with scaled real-time 

online network simulator, and can as well be used to simulate and understand complex grid 

behavior  

For computational modeling, efficiency is a critical issue, as we need to construct virtual 

grid environments with large numbers of resources in order to run large numbers of complex 

grid applications. Accuracy is a second priority, but the level of accuracy must remain steady 

enough to support direct execution of applications. In our approach, this is achieved through the 

use of soft real-time process scheduling, combined with resource virtualization based on virtual 

host identity. 

The network model provides the communication and coordination which couples the 

resource simulation modules. It is addressed by using detailed packet-level simulation and 

realistic network routing protocols, which makes scalability the major remaining challenge for 

network modeling.  To address scalability, we use parallel discrete-event simulation enhanced 

by sophisticated load balancing algorithms which exploits a range of static network and 

dynamic application information, distributed network simulation.  Our experiments demonstrate 

that our approaches can achieve scalable parallel discrete event simulation, while supporting 

high fidelity simulation of a large grid system.  
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An important concept in our approach is scaled real-time execution. To guarantee correct 

interaction between different simulation components, the components should make progress at 

the same pace. Scaled real-time execution achieves the desirable effect of global coordination 

while providing more flexibility, when simulating larger or faster virtual resources with limited 

physical resources. 

1.5 Contributions 

The primary contribution of our work is to introduce a scientific instrument for study of 

Grid dynamics, the MicroGrid.  This system enables a novel approach to the study of the 

interaction between applications, middleware, resources, and networks via online simulation at 

full scale. Individual contributions are summarized below: 

1) A Simulation Framework which enables flexible and accurate virtual grid modeling. 

We proposed a scaled real-time online simulation mechanism to study application 

performance directly. Its capabilities include instrumentation needed to capture real application 

detail, flexible network modeling and configuration. Coupled with our soft real-time process 

scheduling mechanism, it can provide a high fidelity virtual grid modeling environment.  

2) A Formulation that maps the critical load balancing problem of network simulation 

to a graph partitioning problem, and solves it with graph partitioners, to improve the 

scalability of network simulation. 

Exploring a range of edge and node weighting schemes based on a variety of static network 

and dynamic application information, we designed and evaluated three weighting mechanisms, 

and demonstrated that, compared to topology-based techniques (TOP), adding application 

placement information (PLACE) improves load-balance significantly, while adding profile 

information (PROFILE) enables improvements of 50-66%.  
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3) Load-balancing mechanisms which improve the simulation efficiency and scalability 

for large-scale network simulation. 

While this mechanism can be integrated with the three former algorithms, the hierarchical 

profile-based load balance approach (HPROF) demonstrates the best performance in simulating 

large scale network. It is shown that HPROF can increase efficiency and scalability by over 100 

times, achieving a parallel efficiency of over 40% on 90-node clusters, for a range of 

experiments.  

4) Large-scale detailed packet level network simulation, with  realistic network 

topology and network routing structures (100 AS with 200 routers in each AS, BGP4 and 

OSPF routing). 

In addition to detailed modeling of OSPF and BGP routing protocols, we developed a set of 

heuristics for automatic realistic BGP routing configuration as an improvement to Internet-like 

topology generation. 

5) A System which achieves accurate grid dynamic study at unprecedented scale.  

We implemented and validated the MicroGrid toolkit prototype. Simulation experiments of 

different large-scale network topologies and applications on Linux clusters show that our 

implementation is scalable. Using a 128 node cluster, we are able to accurately simulate a 

network with 20,000 routers, which is comparable to a large ISP network.  

1.6 Dissertation Roadmap 

The rest of this dissertation is organized as follows. Chapter 2 provides a simple 

introduction on current approaches for application performance modeling, and some 

background on parallel and distributed discrete event simulation and graph partition algorithms. 

Chapter 3 presents the specific context of our work, defines the problem we address, and 

provides our dissertation statement and criteria for success. We introduce our approach to the 
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problem, scaled real-time online simulation, in Chapter 4. Chapter 5 presents the details of our 

MicroGrid design and implementation, which includes the soft real-time process scheduling, 

online network simulation, and the load balancing algorithms for larger scalability. The 

MicroGrid system is validated in Chapter 6, and experiments on different network topologies 

and applications are used to show the scalability of the MicroGrid systems in Chapter 7, 

focusing on the effect of our load balancing algorithms. After that, the MicroGrid is used on two 

real network related research experiments in Chapter 8. We discuss related work in Chapter 9 

and conclude in Chapter 10 by summarizing and discussing future research directions.  
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Chapter 2 Background 

In Section 2.1, we give a simple introduction of current approaches for application 

performance modeling. After that, we present some background for understanding the reminder 

of the dissertation. Section 2.2 introduces some basics of parallel and distributed discrete-event 

simulation, which is a key base of our network simulator. Then Section 2.3 introduces the graph 

partitioning algorithms used in our load balance studies of network simulation.  

2.1 Application Performance Modeling  

In this section we introduce four methods that have been used for network distributed 

system and Grid experiments to evaluate dynamic behavior: network simulation, Grid modeling, 

emulation, and real testbeds. 

2.1.1 Grid Modeling Toolkits 

A wide range of software tools [24] provide general-purpose discrete-event simulation or 

even more focused Grid simulation libraries. The notable ones are Bricks[25], MONARC[26], 

GridSim[27] [28], and SimGrid[29].   

The Bricks simulation system [25], developed at the Tokyo Institute of Technology in Japan, 

helps in simulating client-server global computing systems that provide remote access to 

scientific libraries and packages running on high-performance computers. Bricks is designed 

using an object-oriented discrete-event simulation framework and implemented in Java. Bricks 

provides a Brick script language that enables the user to setup configuration and parameters of 
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the Global Computing Environment. The user resorts to building “bricks” within the script to 

build and evaluate a variety of simulations. 

The MONARC (Models of Networked Analysis at Regional Centers) [26] simulation 

framework is a design and modeling tool for large-scale distributed systems applied to High 

Energy Physics experiments. It is an object-oriented discrete event simulator, written in Java. 

The tool employs a process-oriented approach for flexible simulation, and consists of threaded 

objects or “Active Objects”.  The framework provides a complete set of basic components 

(processing nodes, data servers, network component) for easily building complex computing 

model simulation. 

The GridSim [27], developed at University of Melbourne in Australia, supports modeling 

and simulation of heterogeneous Grid resources, users, applications, brokers and schedulers in a 

Grid computing environments. It provides primitives for creation of application tasks, mapping 

of tasks to resources and their management so that resource schedulers can be simulated to 

study the scheduling algorithms involved. GridSim is based on the event-driven discrete event 

simulation engine SimJava [28].  

The SimGrid[29] toolkit, developed at UCSD, is a C language based toolkit for the 

simulation of application scheduling. SimGrid aims at providing the right model and level of 

abstraction for studying Grid-based scheduling algorithms. It supports modeling of resources 

that are time-shared, and the load can be injected as constants, or from real traces. Using 

SimGrid API, tasks can be assigned to resources, depending on the scheduling policy being 

simulated. 

The primary limitations with all of these grid modeling tools is that they do not allow easy 

use of existing applications and grid middleware, and thus, the results achieved are only as good 

as the models which are developed for these complex pieces of software.   In addition, these 

tools typically have simple models of networks and protocols – known to be inaccurate.  Most 
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important, no direct experimentation with applications, middleware, networks, and grid 

resources is supported. 

2.1.2 Network Simulation 

Many research efforts explore network and computation simulation systems and techniques 

in order to model a wide range of distributed systems and networks.  However, in early systems, 

distributed applications and networks have been studied largely separately – each community 

employing relative simple models for the other domain.  These separate tools cannot be easily 

composed.  For example, many network simulators based on packet-level discrete-event 

simulation that have been built which provide accurate network environment (e.g. NS-2[30], 

GloMoSim [31]，and PDNS [32]).  

NS-2 [30] is a sequential discrete-event simulator that enables the simulation of Transport 

Control Protocol (TCP), routing and multicast protocols over wired or wireless networks. NS-2 

allows network researchers to study and evaluate specific network protocols under various 

network conditions, an essential step to understand their behavior and performance. 

PDNS[32] is an extension of NS-2 with improvement in capacity by using distributed 

hardware. In order to achieve the goal of limited modifications to the base NS software, we 

chose to use a federated simulation approach where separate instantiations of NS modeling 

different sub-networks are executed on different processors.  

GloMoSim[31] is designed to support simulation of very large wireless mobile networks 

with thousands of nodes. It is developed based on the Parsec parallel simulation language. 

GloMoSim can be used to simulate specific wireless communication protocols in the protocol 

stack.  

In terms of grid environment, a common issue of these tools is that they can only capture 

part of what is relevant to future distributed systems which couple resources and networks, and 
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have adaptive applications. They do not model other resources and they do not enable the 

network simulations to be coupled directly to applications. While it is possible to write 

application module for the simulators, the process is labor-intensive, since the applications may 

evolve rapidly. Furthermore, the abstraction and approximation can lose subtle details which 

may be important to application behaviors and performance, since the users may not understand 

the application well. 

2.1.3 Network Emulation  

Emulation refers to the ability to introduce the simulator into a live network; it can be used 

to study the application performance directly. Usually, network emulation supports direct 

application execution and intercepts the live application traffic transparently. However, instead 

of using network simulator, it usually uses software routers or simulated routers to approximate 

the network behavior.  

The dummynet[33] is the most popular of this category. As a flexible bandwidth manager 

and delay emulator, dummynet permits the control of network traffic going through the various 

network interfaces, by applying bandwidth and queue size limitations, and simulating delays 

and losses. In its current implementation, packet selection is done with the ipfw program, by 

means of "pipe" rules. A dummynet pipe is characterized by a bandwidth, delay, queue size, and 

loss rate, which can be configured with the ipfw program. Pipes are numbered from 1 to 65534, 

and packets can be passed through multiple pipes, depending on the ipfw configuration. 

NSE [34], an adaptation of NS-2, also has an emulation facility. When using the emulation 

mode, a soft real-time scheduler is used, which ties event execution within the simulator to real 

time. Provided sufficient CPU horsepower is available to keep up with arriving packets, the 

simulator virtual time should closely track real-time. If the simulator becomes too slow to keep 
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up with elapsing real time, a warning is continually produced, if the skew exceeds a pre-

specified constant threshold. 

The benefit of emulation approach is the speed, since it is required to be fast enough for 

real-time execution. However, it is either limited by scalability, or by the accuracy of network 

modeling. For example, the dummynet cannot capture the congestion of multiple flows on a 

single path, since every flow behavior is modeled independently, and there is no global 

coordination. The NSE uses detailed network modeling based on a sequential simulator; its 

capability is limited for large network emulation. To address these issues, there are many other 

on-going research projects on advanced emulation, such as ModelNet [35] and Emulab [36]. 

However, as we will show in related work in Chapter 9, they have major difference with our 

online simulation approach, and they are not sufficient for our virtual grid modeling target. 

2.1.4 Real Testbeds 

Real testbeds use a specific set of real resources for experiments, such as PlanetLab [37] 

[37], TeraGrid [2], and GrADS testbed [9].  Real testbeds have the advantage of providing high 

speed execution and, of course, realistic execution. However, actual testbeds have a number of 

limitations, including: (i) limited experimental configurations (cannot run experiments for a 

wide range of platform scenarios, or for platforms or networks that do not exist); (ii) non-

observability – phenomena occur which are not observable in routers, systems, networks, etc., 

and (iii) reproducibility – phenomena occur which cannot be repeated to be understood. These 

barriers are a real limitation to understanding important behaviors, and thereby, deeper 

understating of the dynamics behaviors. We believe that simulation tools such as the MicroGrid 

are an essential complement to the use of real testbeds. 
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2.2 Parallel and Distributed Discrete-Event Simulation 

The foundation of the Microgrid, online network simulation, is at parallel and distributed 

discrete-event simulation at the packet level. 

2.2.1 Discrete-Event Simulation 

Simulation is the imitation of the operation of a real-world process or system over time. 

Some real-world systems are so complex that models of these systems are virtually impossible 

to solve mathematically. Numerical computer-based simulation can be used to mimic the 

behavior of the system overtime. Data can be collected from the simulation as if a real system 

were being observed. 

A simulation should contain (1) state variables to represent the state of the physical system, 

(2) some logic and rules on state variable update to model the evolution of the physical system, 

and (3) some representation of time. 

Usually a simulation consists of two layers.  The first layer is the simulation engine, which 

provides the basic components of time, entity, event, channel, and process. The second layer, 

simulation model, builds upon the simulation engine and provides the virtual representation of 

real world systems. 

2.2.1.1. Simulation Time 

Time, in particular simulation time, is a very important concept in the simulation. There are 

several different notions of time that are important when discussing a simulation. 

Physical Time: the time in the real-world system.  

Simulation Time: an abstraction used to model physical time. It is defined as a totally 

ordered set of values where each value represents an instant of time in the physical system being 

modeled. Sometime it is also referred as virtual time. 
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Wall-clock Time: the time during the execution of the simulation program 

The progression of simulation time during the execution of the simulation may or my not 

have a direct relationship with the progression of wall-clock time. Simulations can be classified 

according to their relationship: 

1) Real-time Simulation: the simulation time advances as fast as the wall-clock time. This 

kind of simulation usually involves interaction between simulated and physical systems (like 

human participants in a training exercise). 

2) Scaled Real-time Simulation: the simulation time advances faster or slower than wall-

clock time by some constant factor. For example, the simulation may be paced to advance 1 

second of simulation time for each four seconds of wall-clock time, making the simulation 

appear to run four times slower than the real world. This technique is often used when the 

simulation cannot keep up with the speed of the real system with available physical resources, 

such as in our online network simulation at Chapter 4. 

3) Non-constraint Simulation: there is no relationship between the simulation time and 

wall-clock time. It can make progress as fast as possible. This approach is usually used in pure 

simulation. 

2.2.1.2. Discrete-Event Simulation 

Simulations that utilize a discrete event system are called discrete-event simulations. Most 

simulation systems can be categorized as either discrete or continuous though, “Few systems in 

practice are wholly discrete or continuous, but since one type of change predominates for most 

systems, it will usually be possible to classify a system as being either discrete or continuous” 

[38]. A discrete system is one in which the state variable(s) change only at a discrete set of 

points in time.  For example, the computer network can be treated as a discrete system by 

setting appropriate state variables. If we treat a network packet as the minimal unit of the 
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network model, then system events (packet send, packet arrival, and packet dropping) only 

happen at a discrete set of points in time. So the system state variables, such as packets number 

in a queue, only change at discrete points.  

 While (simulation is going) { 

Remove the event with smallest time stamp from event list 

Set the simulation time to the time stamp of this event 

Execute the event handler, it may put new events to the event list 

} 
 

Figure  2.1 Main Loop in an Event-driven Execution 

Discrete event simulation can work in an event-driven execution mode. In discrete event 

simulation system, the simulation time is a set of totally ordered values, representing state 

variables that are updated when “something interesting” occurs. The “something interesting” is 

referred to as an event, where an event is an abstraction to model some instantaneous action in 

the physical system. An event may change state variables and create new events. Each event has 

an associated time stamp indicating the simulation time that the event occurs. So the simulation 

time jumps from one event to the next event. The simulator maintains a priority queue of events 

following the timestamp order, and always handles the next event with the smallest timestamp 

(Figure  2.1).  

Event-driven execution can be combined with real-time or with scaled real-time modes by 

preventing the simulation from advancing to the time stamp of the next event until wall-clock 

time has advanced to the time of this event. 

2.2.2 Parallel and Distributed Simulation 

When the simulated system becomes too complex to be simulated by a single computer 

node, it can exploit parallel and distributed simulation. The complex physical system can be 

viewed as being composed of some number of subsystems and each subsystem can be simulated 
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by a logical process (LP), and interactions between physical subsystems can be modeled by 

exchanging time-stamped messages between the corresponding logical processes (Figure  2.2).  
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Parallel 
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 Figure  2.2 Parallel Executions of Multiple Logic Processes 

While this paradigm would seem to be ideally suited for parallel/distributed execution, 

synchronization must be used to avoid causality errors. That is, each logical process must 

process all of its events, both those generated locally and those generated by other LPs, in time 

stamp order. Otherwise, it is possible that the computation for one event may affect another 

event in its past. It is easy to maintain the event order in a sequential simulation by using a 

central event queue.  In parallel/distributed simulation, however, it is not enough to use local 

event queues alone. As shown in Figure  2.3, the LP D cannot process the event E14 from LP B 

until it can be sure that no other LPs may send it events with a timestamp smaller than 14. For 

example, LP A may generate an event E12 , which may be physically delivered to LP D later 

than E14. If E14 is processed earlier than E12 in LP D, this is called a causality error. The general 

problem of ensuring that events are processed in time stamp order is referred to as the 

synchronization problem. 
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Figure  2.3 Causality Errors 

Two major approaches to synchronization algorithms are conservative synchronization and 

optimistic synchronization, different in how to move the simulation time. Here we will 

introduce the details of conservative synchronization, since it will be used in our network 

simulator. 

2.2.2.1. Conservative Synchronization 

To prevent causality errors, simulation using conservative synchronization does not process 

an event T until it is sure that no new events will have a timestamp smaller than T. To achieve 

this, some mechanism is required for an LP to indicate to other LPs the current lower bound on 

the timestamp of events it may send out in the future. Null messages can be used for this 

purpose, which are used only for synchronization and do not represent any physical events in 

the simulated systems. As shown in Figure  2.4, a null message with timestamp T1 from LP C to 

LP B promises that no events with timestamp smaller than T1 will be sent from LP C. After LP 

B receives all null messages from all other LPs, LP B can figure out what the upper bound of 

the timestamp is, and all events with smaller timestamps can be processed safely. In this case, 

all events with timestamp less than Min(T1, T2) can be processed safely.  
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Figure  2.4 The Null Message Algorithm 

Then the problem that remains is how to set the timestamp in a null message. Here comes 

one important concept in this Null Message algorithm: Look-ahead, which can be defined as the 

following:  

 

Look-ahead: If a logical process at simulation time T can only schedule new events for 

another LP with time stamp of at least T+L, then L is referred to as the look-ahead for the 

logical process.   

 

In reality, the look-ahead represents the physical limitations on how quickly one physical 

process can interact with each other. For example, in network simulation, it could be the link 

latency between two routers; in air traffic simulation, it can be the time required from an 

airplane to fly from one airport to another airport.  

So the time stamp of a null message can be set to the current time of the LP plus its look-

ahead.  

A major issue in the Null Message algorithm is that its performance depends critically on 

the look-ahead value, which decides how frequently the LPs are required to exchange null 
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messages. As we know, null messages do not represent any useful activity in the simulated 

systems and are pure simulation overhead. 

Global barrier 
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Figure  2.5 Synchronous using Barrier Synchronization Protocols 

The Null Message algorithm can be implemented efficiently using a mechanism called 

barrier synchronizations. A barrier is a general parallel programming construct that defines a 

point in time when all the processors participating in the computation must stop. As shown in 

Figure  2.5, before a LP process enters the barrier, it sends null messages to other LPs; then it 

blocks and waits until it receives all null messages from the other LPs. The barrier operation is 

completed when all LPs have received all null messages, and then the LP is allowed to resume 

execution until the next barrier point, which is the current time plus look-ahead. 
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Null message 

Down-going 
Null message 

 

Figure  2.6 Global Barrier using a Tree Structure 
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The benefit of using a barrier is that we do not have to send null messages between all pairs 

of logical processes. Instead, we can organize the logical processes efficiently and reduce the 

number of null messages greatly. If, the logical processes are on a shared-memory 

multiprocessor, the barrier can be easily achieved by using a global synchronization variable. If 

the logical processes are on a distributed system like a cluster, all LPs in a machine can 

synchronize locally and then use a representative to synchronize with other machines. The 

machines can be organized as a balanced tree with each node of the tree representing a different 

machine (Figure  2.6). When a leaf machine reaches the barrier points, it sends a null message to 

its parents. Each machine will wait until it gets all null messages from its children and then send 

a null message to its own parent. After the root receives all outstanding null messages, it knows 

every machine has entered the barrier. And this information can be propagated back to all 

machines following the revert tree.  

2.3 Graph Partitioning  

Our work exploits graph partitioning algorithms as a key tool in solving critical load 

balance problems, necessary to provide scalability for our network simulator  

2.3.1 Single-Objective Single-Constraint Graph Partitioning 

Problem 

Typical graph partitioning algorithms generally solve single objective partition problems 

such as:  

Given an input graph G = (V, E) with weighted vertices and edges, we want to partition it 

into k parts such that, 

- each part has roughly the same number of vertex weight                  (constraint) 

- the edge-cut (the number of edges) that straddles partitions is minimized  (objective) 
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The task of minimizing the edge-cut is considered as the objective and the requirement that 

the partitions will be of the same size is considered as the constraint. This single-objective 

single-constraint graph partitioning problem is can be efficiently solved with multi-level k-way 

graph partitioning algorithms[39], and it is widely used for static partitioning in scientific 

simulation.  

2.3.2 Multi-Constraint Graph Partitioning Problem 

However, this single constraint graph partitioning problem is not sufficient to model many 

of the underlying computational requirements, found in today’s large scale applications. For 

example, in a large distributed application, we need to balance both the computation load, as 

well as the memory consumption, across multiple physical nodes. Both memory and 

computation are two distinguished constraints, and if the partitioner fails to balance both 

requirements, it is hard to achieve good overall application performance. This problem can be 

solved by modeling it as a graph in which every vertex has an associated weight vector w of 

size m, every weight represent an balance requirement, every edge has a scalar weight, for 

which we find a partitioning such that each partition has roughly equal vertex weight with 

respect to each of m weights and the edge-cut is optimized. This problem is usually referred to 

as the multi-constraint graph partitioning problem, and there are many efficient algorithms 

available [40, 41]. 

2.3.3 Multi-Object Graph Partitioning Problem 

Beside multiple balance requirements, a complex distributed application may have multiple 

optimization requirements. For example, a multi-phase application can consist of multiple 

phases; each phase has quite different communication patterns. If we want to minimize the 

communication traffic across the network, we should put multiple phases together, and balance 

the requirement of different phases. This problem can be solved by modeling it as a graph in 
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which every edge has an associated weight vector w of size m, each weight represents an 

optimization requirement, every vertex has a scalar weight, and for which we find a partitioning 

such each partition has a roughly equal amount of vertex weight and the edge-cut with respect 

to each of m weight and the edge-cut is optimized. This problem is usually referred to as a 

multi-objective problem, and there are some efficient algorithms to solve it [42]. 

There have been a large number of graph partitioning packages targeted at parallel 

computing since the early 90’s, including METIS[42], Chaco[43], Jostle[44], PARTY[39], and 

Zoltan[45]. As a well studied problem, we expect that any high quality graph partitioning 

package (in this case METIS[42]) should produce results of comparable partition quality to 

other graph packages. Our choice of METIS is mainly due to its performance and the flexibility 

in supporting multiple constraints, as well as multiple objectives. 
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Chapter 3 Dissertation Statement 

The focus of our research is to enable the study of dynamic interaction between applications, 

middleware, resources, and networks in a controlled environment. We first describe the 

hardware and software context for this dissertation in Section 3.1, and then we define the 

simulation problem in this context in Section 3.2. Our dissertation statement is given in Section 

3.3, while Section 3.4 discusses the way to evaluate our approach. 

3.1 Context 

First, we introduce applications which are the subjects of our performance study. And then 

we describe the software and hardware resources to be used for the study. 

3.1.1 Target Applications, Networks, and Resources 

In the last few decades, the prospects of large-scale distributed applications deployed across 

the Internet have grown phenomenally. Examples of those applications include distributed 

supercomputing applications, peer-to-peer file sharing application, distributed interactive 

simulation (DIS) for training and planning in the military, and real-time widely distributed 

instrumentation systems[5]. These applications often involve thousands of geographically 

distributed endpoints (including computers, storages, and instruments) connected through wide 

area networks with latency ranging from a few milliseconds to a few hundreds milliseconds. 

They are sufficiently coarse-grained that they can run on the Grid, but their performance greatly 

depends on network conditions, such as traffic congestion and routing stability. When compared 

to traditional parallel and distributed computation in a local area network, the conditions of 
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wide area network show much larger variability and therefore lead to much more unstable and 

unpredictable performance. Moreover, resource hungry large applications can not only affect 

the network performance with their multi-gigabit traffic streams, but may also be network aware 

and respond to current network performance. Therefore, it is critical to study the application 

behavior under different network conditions. 

These applications often have complex logic, coupling large computation and storage 

resources. They can also be built above grid middleware, such as Globus[5], Legion[6], and 

Condor[7]. Furthermore, with help from emerging grid software tools, such as the Network 

Weather Service (NWS)[23] and GrADS developing framework[9], more applications can 

adapt to the available network and resource conditions for better performance. All these 

components together make a complex system which may exhibit non-linear dynamic behavior, 

and depend on some subtle interactions between multiple components.  

It is very important to understand the performance and behaviors of these applications under 

grid environments. It can be used to predict the application performance before deployment, 

decide the resource requirement for predicted performance, diagnose the system abnormality 

after deployment, and detect the system performance bottleneck for upgrading. 

3.1.2 Execution Platform  

In order to understand these applications, we need an execution platform for simulation 

experiments. First of all, the platform hardware and available software should be scalable in 

order to support large scale simulation. Second, the cost effective is also an important criterion, 

since it decides whether or not the platform will be widely available. In our study, we choose 

the cluster platform, based on the following considerations. 

First, clusters have become a cost effective and popular way to build large-scale systems. 

The low latency cluster communication hardware and software (like Myrinet and MPICH-GM) 
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have improved their performance greatly. These days, most supercomputers are built on cluster 

technology, and small clusters are widely available in research communities. Large scale SMP 

machines are too expensive for most researchers.  

Second, also for cost reasons, cluster systems usually have more memory than SMP 

machines. It is normal for a 64-node cluster to be equipped with 256GB memory, which is 

comparable to the 288GB memory of the high end Sun Fire 12K Enterprise Server [46]. Since 

most simulations require a great deal of memory, cluster systems present a big advantage over 

SMP based parallel simulation.  

Third, using flexible cluster technology is often easy to achieve large network throughput. 

For online network simulation, the simulation engine needs to exchange network traffic with 

applications running on other machines. An SMP machine usually has very high inter-processor 

bandwidth, but the external network I/O is usually quite limited, since only a few I/O processors 

can process external network traffic. This may quickly become a bottleneck for the whole 

simulation system. Cluster systems, on the other hand, are quite different. With current network 

switches, the application traffic can be easily handled by every simulation node and efficiently 

distributed to different nodes for better load balance. 

Our target cluster is one that can fit in a single room and is entirely connected by at least 

one high performance network, such as switched Fast Ethernet or Myrinet. Bandwidths of the 

network range from 100Mbps up to 10Gbps, and the network latency for small message should 

be around a few microseconds. In addition, our target cluster should have TCP/IP protocols and 

a high performance MPI implementation available, such as MPICH-GM.  The MPI is primarily 

used for the communication within the distributed network simulation.  
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3.2 Problem 

To meet the challenge outlined above, integrated simulation tools are required for modeling 

virtual grid systems. The questions are how to do it, how to do it accurately, and how to do it 

efficiently with high scalability. 

3.2.1 How to Provide a Virtual Gird Environment 

A virtual grid environment should be fully virtualized, which means applications can be 

executed on the virtual grid without any modification, they should use all virtual resources, 

storage, and networks transparently. This is important to maximize the range of experiments 

and their realism. Compared to traditional emulation systems, which also support directly 

execution of real applications, a virtual grid environment is more complex because it must 

support virtual resource identification, virtual resource discovery, and virtual resource 

interaction. It is critical to use real applications and middleware transparently; it is also required 

in order to enable the direct study of dynamic interactions between applications, middleware, 

resources, and networks. 

For example, in a typical Globus application, one may use the GIS system to discovery 

suitable resources first, and then submit the job to multiple gatekeepers, which launch jobs on 

local resources through job-managers. There are many open questions with regards to 

supporting Globus application transparently, they include: How do we describe and discover 

virtual resource in the GIS system; how do we associate virtual resources with gatekeepers; and 

how are applications launched from job-managers on virtual resources.  

3.2.2 How to Simulate Efficiently and Accurately 

Although highly accurate simulations are always desirable, with limited physical resources 

one must make tradeoffs between accuracy and efficiency. For example, there are accurate 
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simulators for processor, memory, and disks. But if those simulators were used for grid 

modeling, they would take too much time to yield any results, despite their accuracy. On the 

other hand, the resource simulation must be accurate enough in capturing the underlying details 

for it to be useful. For example, in a peer-to-peer application, it requires hundreds of endpoints 

to build a representative overlay network structure. 

So the first question to ask is how much accuracy is required for a specific resource 

simulation, or could we reduce the accuracy requirement without hurting the overall accuracy of 

the whole simulated system. For example, do we need packet level detail for network simulation, 

and do we need the instruction level simulation for computation resource modeling. After this, 

we should determine how to simulate it efficiently. Our choices may include how to simplify 

the routing protocol in simulation without affecting the final routing decisions, or how to 

aggregate the simulation of a large number of idle virtual resources with a single physical 

resource. This decision making is critical to achieve accurate modeling of a virtual grid, in a 

timely manner, given the bounds of physical resource constraints. 

3.2.3 How to Simulate with High Scalability 

Another challenge in modeling grid dynamics is the scalability of the simulation tools. 

Essentially this means, can the simulation tool use physical resources efficiently and also, can it 

support simulation of larger networks or applications when more resources are available. This 

challenge is decided by both the scale of the Internet itself, which includes millions of hosts and 

routers, and the scale of grid applications, which usually consist of hundreds and thousands of 

processes distributed across a wide area network. To make a meaningful grid simulation, it 

should be able to support a network comparable to a significant part of the real Internet, with 

reasonable background traffic; it should also be able to support real applications with thousands 

of endpoints. 
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In Grid simulation, the scalability issue is particularly critical for the network simulation. 

The other components, such as computing nodes and storage systems, can be simulated in 

parallel given enough computing resource. However, these components need communication 

and coordination to function correctly, which in a distributed simulation happens through the 

network system. Due to small network delay and fast interaction among network routers and 

endpoint hosts, the whole network systems must be simulated with enough concurrency and 

tight synchronization.  

Beside the implementation efficiency we mentioned above, there are two major factors 

affecting the scalability of a distributed simulation system. First, scalability depends on 

available parallelism, and thus, the problem is whether and how to find large parallelism for a 

given network simulation. There is significant on-going research on parallel and distributed 

network simulation. Some of these solutions exploit the parallelism in network simulation on 

SMP machines, but they suffer from limited internal hardware scalability. Only a few recent 

simulators support exploiting scalable message passing systems, such as a cluster system. 

However, none of them have demonstrated good scalability when challenged with irregular 

network simulation problems. This is due, mainly, to the fact that the communication overhead 

on cluster systems is much larger than that of SMP machines, and thus, it requires more 

parallelism in the simulation problem itself, in order to achieve good performance.  

Second, scalability depends on the achieved load balance. Load balance is important 

because it directly affects the simulation performance: the speed of the parallel/distributed 

simulation is limited by the speed of the node with the most loads. How to achieve load balance 

across simulation engine nodes is still an open research problem. Since the simulation engine 

load depends predominately on the amount of simulated traffic, which may change dramatically 

during the simulation, balancing the simulation load is a big challenge. Our choice of cluster 
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platform also makes load balance  more difficult, since it basically rules out the possibility of 

dynamic load balance, due to the high overhead of  task migration across machines.   

3.3 Dissertation Statement 

My thesis is: 

Accurate and comprehensive study of the dynamic interaction of applications, middleware, 

resources, and networks is important and is possible with scaled real-time online network 

simulator. Using sophisticated load balance algorithms by exploiting a range of static network 

and dynamic application information, distributed network simulation based on discrete-event 

simulation engine can be scalable and support high fidelity simulation of a large grid system.  

 

Scaled real-time simulation is our approach to enable hybrid simulation of multiple 

simulation modules. As we argued in the last section, it is essential to model multiple resources 

and network together for modeling dynamic interaction of applications, middleware, resource, 

and networks. Scaled real-time simulation is a special kind of simulation in which simulation 

time advances with constant rate, usually slower than real-time. It is different from traditional 

simulation and emulation approaches in the way the simulation time advances:  in traditional 

simulation, the simulation time advances as fast as possible, and in emulation approaches, the 

simulation time advances just as real time. Our approach relaxes this real-time requirement of 

emulation and allows more flexible resource speeds and ratio. Scaled real-time simulation is the 

base of coordinating multiple hybrid simulation modules without complex synchronization 

mechanism. 

Online network simulation is our approach to improve the simulation accuracy. It is an 

enhanced network simulation technology, which can pass live traffic from application through 

the simulated network to its destination, and support direct application execution. Thus, online 
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network simulation allows the study of real, temporal and feedback behavior of network and 

application protocols, as well as their interaction with other network traffics. The scaled real-

time online network simulation technique, plus other resource modeling and virtualization 

methods, can provide accurate simulation of virtual gird environments. 

To support large-scale simulation, the key speed limits are the simulation efficiency and the 

load balance of distributed network simulation. The load balance problem is known to be hard, 

since simulation workload is proportional to network traffic packet number, which changes 

dramatically with bursts of traffic loads in large network. The characteristics of grid 

environment with highly distributed applications and complex dynamic interactions between 

applications, networks and resources make the problem even harder. Our sophisticated load 

balance algorithms exploit a range of static network and dynamic application information to 

improve the load balance. Good load balance is important for the performance of the network 

simulation and therefore for the scalability of the entire virtual grid model.  

3.4 Success Criteria 

To demonstrate that our scaled real-time online simulation technique can successfully 

enable hybrid simulation of multiples resources and application together, we need to present our 

design and implementation. Success will be demonstrated by providing a simulation toolkit 

which can provides modeling of virtual grid environment. Using this simulation toolkit, we will 

construct a range of grid environments and execute a batch of real applications directly on the 

simulated grids. 

In addition to the support of direct application execution on virtual grids, fidelity is also an 

important success criterion. For fidelity, the basic question is whether we have developed a 

simulation mechanism that can provide detailed and accurate modeling of the virtual grid. 

Success will be demonstrated by a range of validation experiments. We will first provide 
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validation on the accuracy of single resource modeling, including network and computation 

resource. The validation experiments will show that the network simulator achieves correct 

network latency and bandwidth under multiple network configurations and that the computation 

resource simulation enforces the correct resource usage under multiple resources and 

application configurations. Then we will validate that for a given real application, the modeling 

is still accurate. The basic methodology is to use the MicroGrid to simulate a few real systems, 

and then, compare the application performance on real systems directly to that on the simulated 

systems. The application execution time between the real systems and the simulated systems 

should match. 

Using advanced load balance algorithms to achieve good scalability is also a critical claim 

in our dissertation statement.  Success will be demonstrated by designing and implementing 

those load balancing algorithms, applying them on experiments with a range of network 

topologies and application configurations, and improving the scalability of the whole simulation 

systems in the term of load imbalance, application simulation time, and parallel efficiency (see 

Section 7.1.3 for detailed metrics definition).   

We will also show that the scalability we achieve is good enough for detailed grid modeling. 

Success will be demonstrated by executing simulations of Grid applications over large network 

systems, including a simulation of a large ISP network with 20,000 routers and hosts, a 

simulation of the real Internet BGP simulation of more than 16000 Autonomous Systems, and a 

simulation of a large scale Denial of Service attack on an 200-node overlay network with 200 

users and 10Gbps of attacking traffic. We set these scale thresholds (network size, application 

number, traffic volume, etc.) because we think they are large enough to keep the major feature 

of a large grid environment and that the simulation results are applicable to real grid 

environments. 
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Chapter 4 Approach 

In this chapter, we discuss high level concepts behind our approach to virtual grid modeling, 

and discuss and justify major design decisions in the MicroGrid.   

4.1 Overview 

Using scalable physical resources, the basic objective of the MicroGrid is to provide a 

virtual grid environment for real grid applications and middleware, enabling direct execution on 

a large number of virtual resources with arbitrary performance ratios (Figure  4.1). 

 

 

 

 

 

 

Figure  4.1 The Approach in the MicroGrid 

Addressing the problems of constructing such a high-fidelity virtual grid, as listed in 

Section 3.2, our approach to integrated online simulation of virtual grid environments is as 

follows. 

1) Resource Virtualization using Live Application Interception. The application 

perceives only the virtual grid resources (host names, networks), independent of the 

physical resources being utilized. Using live application interception, we can also 
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virtualize the grid information services and virtualize/simulate the appropriate operating 

system resources. 

2) Computation Resource Simulation using Soft Real-time Scheduling. The target is to 

achieve accurate computation resource modeling with less overhead and less 

prerequisites. Based on direct application execution and user level process scheduling, 

the soft real-time scheduling approach can efficiently model a large number of virtual 

resources on a single physical host. 

3) Network Modeling using Scalable Online Simulation. To improve the scalability of 

virtual grid modeling, the traffic-based load balance for distributed conservative 

discrete-event network simulation is used. The distributed simulation can exploit 

parallelism in the network simulation problem, and our sophisticated load balance 

algorithms can use a range of network and application information to achieve good load 

balance and performance of the entire simulation. 

4) Coordination of Multiple Simulation Modules using Scaled Real-time Execution. To 

provide a coherent global simulation of multiple virtual resources, we need to 

coordinate the simulation speed of different virtual resources. This can be achieved 

through scaled real-time execution of all simulation modules. Based on the desired 

virtual resources and physical resources employed (CPU capacity and network 

bandwidth/latency), the virtual time module determines the maximum feasible 

simulation rate, under which all resource simulation can be run in a functionally correct 

manner. 

We will discuss these approaches in detail in the following sub-sections. 
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4.2 Resource Virtualization using Live Application Interception 

To virtualize a grid environment, the MicroGrid intercepts all direct uses of resources or 

information services made by the application.  In particular, it is necessary to mediate over all 

operations which identify resources by name, either to use or retrieve information about them. 

We first consider general mediation, and then we consider the specific issue of information 

service. 

4.2.1 Virtualizing Resources 
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Figure  4.2 Virtualization based on VMM 

Virtualization, in a rather loose definition, is a framework that devides the resources of a 

computer into multiple execution environments. More specifically, it is a layer of software that 

provides the illusion of a real machine to multiple instances of virtual machines. In general, 

there are two possible ways to virtualize resources. The first approach is the virtual machine 

monitor (VMM) approach (Figure  4.2), including VMWare[47], Denali[48], Entropia[12], and 

Xen[49]. VMMs usually provide full virtualization, while a guest operating system instance is 

required to provide a virtual machine on which traditional applications can be directly executed. 

However, the complexity and overhead of VMMs is so large that it is infeasible to create many 

instances on a single physical machine. For example, the CPU performance loss of VMWare is 
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between 9-15%. Also, VMMs have little support for virtual network performance modeling, 

which we will discuss in Section 4.3. 

 
Hardware 

Shared OS 

App with 
Virtual ID

App with 
Virtual ID

App with 
Virtual ID 

 

Figure  4.3 Virtualization based on Virtual Host ID 

Another approach is to just virtualize the host identity (Figure  4.3). In general, we need to 

virtualize processing, memory, networks, disks, and any other resources being used in the 

system.  However, since operating systems effectively virtualize each of these resources -- 

providing unique namespaces for each process and sharing of CPU, disk, etc-- the major 

challenge is to virtualize host identity.  The benefits of this approach are the simplicity and 

efficiency; consequentially, it can be naturally used for virtual network performance modeling. 

This approach is especially good if one wants to create a large number of virtual hosts, but 

maybe only a small part of them are active at the same time. The idle virtual machines basically 

introduce no overhead to the physical machine, a feature quite different from that of the VMM 

approach. Of course, this requires added resource modeling to guarantee correct virtual resource 

performance. 

In the MicroGrid, we choose the virtual host identity approach, since we intend to simulate 

a very large number of virtual hosts. Each virtual host is mapped to a physical machine using a 

mapping table of virtual IP address to physical IP address. All relevant library calls are 

intercepted and mapped from virtual to physical space using this table. These library calls 

include: 

gethostname() 
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bind, send, receive (e.g. socket libraries) 

process creation 

By intercepting these calls, a program can run transparently on a virtual host with the 

appearance of the virtual hostname and IP address.  The interception ensures that the program 

can communicate with processes running on other virtual Grid hosts.  Many program actions 

which utilize resources (such as memory allocation) only name hosts implicitly, and thus, do not 

need to be changed.  Any socket-based application can be run on the virtual Grid as the 

MicroGrid completely virtualizes the socket interface. 

4.2.2 Virtualizing Information Services 

Information services are critical for resource discovery and intelligent use of resources in 

Computational Grids.  To provide a fully virtualized Grid environment, we also need to provide 

information services for virtual resources. For example, when it comes to supporting the Globus 

middleware, this problem amounts to virtualization of the Globus Grid Information Service 

(GIS)[50].  

One key problem is how to get application to look at the virtual information service. One 

straightforward solution is to run an information service in the virtual world, and store and 

retrieve all virtual resource information directly. This is a simple solution in logic, but it 

introduces a large overhead in experiments. For example, in Globus, this requires a GIS server 

for every experiment, it takes significant time to initialize the GIS server, and makes it hard to 

add simulation-related information.  

Instead, our approach is to use a real information server --- no additional servers or 

daemons are needed. In this approach, an application running in the simulation environment 

needs to talk to a server in the real world, and it requires special support from the network 

virtualization module. The network virtualization module should intercept all access to network, 
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identify all access to virtual information services, and forward them to the real information 

server directly, instead of routing through the network simulator. 

Beside this transparent access issue, desirable attributes of a virtualized information 

services include: 

1) Compatibility: virtualized information should be used as before by all programs 

2) Identification and Grouping: easy identification and organization of virtual Grid entries 

should be provided 

3) Use of identical information servers: there should be no incompatible change in the 

entries 

Our approach achieves all of these attributes by extending the standard GIS LDAP records 

with fields containing virtualization-specific information.  Specifically, we extend records for 

compute and network resources.  Extension by addition ensures subtype compatibility of the 

extended records (a la Pascal, Modula-3, or C++).  The added fields are designed to support 

easy identification and grouping of the virtual Grid entries (there may be information on many 

virtual Grids in a single GIS server).  Figure  4.4 and Figure  4.5 show examples of the 

extensions to the basic host and network GIS records. 

 hn=vm.ucsd.edu, ou=CSAG, ... 

Is_Virtual_Resource=Yes 

Configuration_Name=Slow_CPU_Configuration 

Mapped_Physical_Resource=csag-226-67.ucsd.edu 

CpuSpeed=10 
 

Figure  4.4 Virtual Host MDS Records 
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 nn=1.11.11.0, nn=1.11.0.0, ou=CSAG 

Is_Virtual_Resource=Yes 

Configuration_Name=Slow_CPU_Configuration 

nwType=LAN 

speed=100Mbps 50ms 

 

Figure  4.5 Virtual Network MDS Records 

4.3 Computation Resource Simulation using Soft Real-time 

Scheduling 

To provide accurate virtual grid modeling, the MicroGrid need to simulate every 

computation resource as a component of the overall simulation, providing real-time 

performance feedback to the simulation and regulating the rate at which virtual time is allowed 

to progress. The major challenge in computation resource simulation is that we need to simulate 

a large number of resources efficiently, due to the fact that a typical grid environment usually 

includes thousands or more resources which need to be simulated in a much smaller cluster 

system.  

One possible solution to the above challenge is using the VMMs in Section 4.2, which also 

provide computation modeling for virtual machines. This approach is accurate but involves 

more overhead. Another possible approach is to use real-time operating systems to schedule the 

execution of virtual machines, which can be more accurate, but less flexible, since real-time 

operating systems are not widely deployed.  
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Figure  4.6 Computation Resource Simulation using Soft Real-time Scheduling 

Based on the direct execution of application and resource virtualization, computation 

resource simulation is to provide appropriate performance for the processes running on a virtual 

compute resources. As shown in Figure  4.6, the MicroGrid uses a CPU controller, a soft real-

time process scheduler, on each physical host to control resource utilization of the processes 

resident with each virtual machine. Periodically, the controller checks the CPU usage of every 

application process on the physical machine, and then calculates the latest CPU usage of each 

virtual host. If the amount of effective cycles exceeds the speed of the virtual hosts, the 

controller stops all processes of that virtual host; otherwise, the controller wakes up the 

processes and lets them proceed. 

In theory, this approach can accurately simulate an arbitrary number of virtual computation 

resources by tuning the simulation speed. However, due to the limitation of non-real-time 

operating systems and minimal OS scheduling unit, the CPU controller can neither accurately 

monitor the real resource usage of every application process, nor stop and wakeup a special 

process at the exact points it should.  We will discuss in more detail how to address this issue in 

Section 5.2. 
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To summarize, our computation resource simulation approach is to use direct execution on 

original operating system, and control the overall CPU time allocated to a specific virtual 

machine. This light-weight approach is efficient and can support a large number of virtual 

machines on a physical machine. Moreover, it is flexible, and can be used on any target 

operating system of the real application. One major short-coming to this approach is low 

accuracy, since it does not guarantee resource usage from the bottom line. However, as you will 

see from the validation experiments in Section 6.1, the accuracy is sufficient for most 

application simulation. 

4.4 Network Modeling using Scalable Online Simulation 

There are critical challenging requirements for network simulation in the MicroGrid: 

accuracy, scalability, and support for direct application execution, and they are addressed in 

Section 4.4.1, Section 4.4.2, and Section 4.4.3, respectively. 

4.4.1 Packet Level Detailed Simulation 

While significant advances have been made in aggregate modeling of network behavior[20, 

21], at present only detailed packet-level or close analogs can model protocol dynamics 

accurately, particularly in extreme cases[23]. This is especially true when we target our study on 

application performance. Extreme cases are important. Since while they rarely happen in normal 

operation, their consequence may be critical. For examples, for a distributed application, what is 

the performance with routers in link saturation as happens under malicious Denial-of-Service 

attacks? How could the routing system respond if there is temporary network partition due to 

attacks? 

Remember that we want to understand the behavior of individual applications, we want to 

understand and diagnose anomalies, and we also want to understand behavior of collections of 

applications and resources in ordinary and extreme circumstances. For all these purposes, the 
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details matter. Since network and application behavior depends on detailed packet behavior, and 

feedback effects on network protocols and resource management are critical, the simulation 

must use closed-loop feedback. 

To capture as many as possible network protocol details, packet level simulation is required 

to provide accurate modeling. For example, it is known that most applications use the TCP 

protocol for network communication and their performance directly depends on the behavior of 

TCP. However, TCP performance is sensitive to individual packet behavior. For instance, 

whenever a TCP sender detects packet loss, it will reduce the congestion window size by half, 

thus reducing the TCP bandwidth dramatically. Congestion window increase, which is additive, 

takes a longer time to recover. Another example is the Nagel Algorithm[51] in TCP, which is 

used to delay the sending of small data until more data are available, because sending large 

packets has less overhead. However, this optimization may raise major performance issue for 

interactive or RPC-based applications.  

4.4.2 Online Network Simulation 
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Figure  4.7 Online Network Simulation vs. Network Simulation 

Network simulators, such as the NS-2, have been widely used to study network protocol 

and network performance for a long time. Usually these tools focus on the network itself, and 
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they cannot be used to study application directly. The user must write a simulation module to 

abstract and mimic the behavior of the application. It requires deep understanding of the 

application to write such a performance module effectively, and it invariably introduces 

unknown inaccuracy through this approximation and abstraction. With the coming of complex 

distributed and Grid application, it becomes less and less feasible to write accurate application 

modules for simulation. Instead, people want to study applications directly using an online 

network simulation, an enhanced network simulation technology which can support direct 

application execution by passing and modeling the behavior of live traffic from application 

through the simulated network to its destination. 

The MicroGrid supports direct execution of real applications to exercise complex 

applications and to capture the subtle interaction between applications, middleware, and 

operating systems. Just like the virtualization of network identity, the MicroGrid intercepts all 

network related function calls in a given application, and redirects the traffic into the network 

simulator. The packet movement and timing are modeled by the network simulator and the data 

are feed back to real application at the other endpoint at the correct time (Figure  4.7). Here the 

MicroGrid provides a virtual Grid environment and the user can use it as a real Grid testbed 

transparently. We call this approach online network simulation.  

The benefit of online network simulation is that the user can study application performance 

directly, rather than building another application module for the simulation. This reduces the 

overhead of simulation greatly, and since it catches all the details of the application 

implementation as well as interactions between the application and the real system, it provides 

more accurate and direct results to the users. 

There are two major challenges in online network simulation. First, we need to intercept the 

network traffic transparently; second, the delay between the application and simulator must be 



46 

 

negligible when compared to the simulated network delay, since this delay is not modeled by 

the simulator. We will discuss this in more detail in Section 5.3. 

There is another technique that has an objective similar to online network simulation, but 

uses a different approach, called network emulation. Like online network simulation, network 

emulation also supports direct application execution and intercepts the live application traffic 

transparently. However, instead of using a network simulator, it usually uses software or 

simulated routers to approximate the network behavior. The benefit of this approach is the raw 

speed it offers. This approach often allows for emulation that is fast enough for real-time 

execution. However, accuracy and flexibility are usually limited when compared with online 

simulation.  

4.4.3 Distributed Conservative Discrete Event Network Simulation 

Here we describe and justify some of our design choices in network simulation. 

4.4.3.1. Parallel vs. Distributed Simulation 

To provide scalable large-scale simulation, we can use parallel discrete-event simulation. 

Over the last two decades, parallel discrete-event simulation, or PDES for short, has been 

recognized as an important and challenging research area. PDES is used when executing a 

single discrete-event simulation program on a parallel computer, which can be either a shared-

memory multi-processor or a distributed-memory cluster of computers. By exploiting the 

parallelism inside a simulation problem, parallel simulation overcomes the limitation of 

memory and execution speed of sequential simulation. We can find in-depth review of the state 

of art of PDES in the Fujimoto book[52].  

In general, parallel simulation on shared memory machine is a much mature approach and is 

expected to provide good performance, which is due primarily to simple programming model 

and small communication overhead. However, distributed simulation on clusters using message 
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passing communication could be a better choice for large scale network simulation, based on 

the following consideration. 

First, clusters have become a cost effective and popular way to build large-scale systems. 

As we mentioned in Section 3.1.2, clusters are widely available for researchers. Second, clusters 

are more scalable than SMP systems. Currently all the largest supercomputers are based on the 

clustering technology and some of them are available for public accesses in national computer 

center, such as NCSA and SDSC. This provides the opportunity for extreme large-scale network 

simulation. Third, the coming of advanced distributed simulation technology, including DaSSF, 

enables a chance to build large scale network simulators based on distributed simulation. 

4.4.3.2. Conservative vs. Optimistic Simulation 

Conservative algorithms try to avoid any possible causality errors. In practice, they are 

usually overly pessimistic, and force sequential execution when it is not necessary. This reduces 

the achievable parallelism in the simulation and requires good look-ahead (see Section 2.1) for 

concurrent execution and scalability. Optimistic algorithms, on the other hand, allow violation 

to occur but provide a mechanism to recover, which can achieve greater parallelism and has no 

limit on the look-ahead. However, optimistic algorithms usually have more complex control and 

need special mechanisms for state saving, roll back, and dynamic memory allocation.  

The preference for different synchronization methods depend on the structure of simulation 

events and interaction between simulation entities, which in turn depends on the systems being 

modeled. For online network simulation, we prefer the conservative algorithm for the following 

reasons.  

1) Easier to implement. From our experiments, we can also tell that the look-ahead in 

network simulation is sufficient (with good partition algorithms) to achieve good speedup, even 
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when the absolute look-ahead is not very large: the network delay of a physical link (1-10 

milliseconds).  

2) Smaller memory footprint. In a large network simulation, we need to simulate thousands 

of hosts and routers, and an even larger number of network packets. The memory requirements 

are critical to the scalability of the whole system. Due to the property of optimistic simulation, 

the simulator must keep the un-commit events for possible roll-back. Because of the nature of 

high speed network traffic, this memory consumption can easily go out of control and degrade 

the benefit of optimistic simulation.  

3) More stable progress for real-time execution, which is critical for online network 

simulation. The rollback of optimistic simulation may halt the simulation and affect the real 

time simulation accuracy. 

4.4.3.3. Automatic Load Balance for Scalability 

As we discussed in Section 3.2, scalability is an open research challenge for network 

simulation. The detailed packet level simulation requirements in the MicroGrid present an even 

greater scalability challenge. In a large network consisting of thousands of routers and hosts, 

there are a large number of traffic flows. It is a serious challenge to simulate such a large 

network, which requires such a huge number of computation and memory resources. There is 

already a lot of research going on to improve the scalability of network simulation. But much  

of this research uses approximation, for example, reducing the network size by removing non-

bottleneck routers and links[53], relaxing the synchronization requirement[35], or even using 

fluid flow to represent traffic[54]. As we have shown in Section 4.3.2.1, details matter and none 

of these approximations are suitable for our purpose.  

With the constraints above, we want to exploit the parallelism in the original network 

simulation problem to improve scalability. Based on the specification of the virtual and the 
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physical resources, the MicroGrid needs to map virtual machines to physical hosts. To achieve 

scalable performance, we must use automatic mapping to balance the compute and memory 

load across physical machines and thus reduce the network traffic between them.   

To achieve the optimal load balance is an NP-Hard problem[55], and this is impossible 

without the network traffic information; in practice, a network mapping problem can be 

naturally modeled as a graph partitioning problem and solved with the classical graph 

partitioning algorithms with approximation. With detailed traffic information, we can estimate 

the number of simulation events on each single link and use it to calculate the edge weight.  We 

will discuss this approach in more details in Section 5.4. 

4.5 Scaled Real-time Execution 

To maintain the correct execution timing relationship between the application and the 

network, we must coordinate the pacing of the network simulator and the execution rate of real 

application. The easiest way is to let both make progress in real-time mode. However, this 

approach is not flexible and sometime infeasible, since the simulator might not powerful enough 

to keep up with real-time execution. In this case the simulation must be slow down. For 

example, if we want to simulate two 4GHz machines using a 1GHz machine, the application has 

to be slowed down by a factor of 8, which means the simulation will require 8 times more than a 

real system to complete. As shown in Figure  4.8, for an application taking 15 minutes of real 

time, the simulation will take 2 hours (8 times) to complete.  
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Figure  4.8 Simulation Rate 

To maintain the correct interaction between the network and the application, the network 

simulator must be slowed down by the same simulation rate as all other simulation modules. For 

example, if an application should spend 15 seconds on computation and then 5 seconds on 

communicate, if we only slow down the computation by a factor 2, then the computation and 

computation ratio becomes 6:1, instead of the real 3:1. Such distortion of the real scenarios can 

introduce large inaccuracy in simulation results. Our approach avoids that problem.  

There is also a good side-effect of slow down, it improves the accuracy of the whole 

simulation; since it makes the delay between application and simulator much smaller when 

compared to the simulated network delay.  

To achieve scaled real-time simulation, the simulator must first decide the scale factor 

(Scale) and then make progress according to this scale factor. The pseudo code of the simulation 

control is listed in Figure  4.9.  

 Tstart_wall_clock_time = wallclock(); 

While ( simulation ) { 

 Wait until ( scaled_virtual_time() >= simulation_time); 

 Processes all events at the end of this time step 

 Advance simulationtime to the next time step 

} 
 

Figure  4.9 Pseudo Code of the Scaled Real-time Simulation Control 
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This capability can be used to simulate future networks or processors which are much faster 

connected to slow 100Mbit networks, future 100Gbit networks, and every speed in between.  

For example, by slowing the simulated speed of computing resources, the effect of future high 

speed transparent optical networks can be studied.   

4.6 Summary 

In this chapter, we introduced the MicroGrid approach to modeling the dynamic interaction 

between applications, middleware, resources, and networks. To address the challenge of 

modeling complex grid applications, Section 4.2 and Section 4.3 present possible solutions 

based on live application interception and controlled direct execution. Section 4.4 focuses 

mainly on how to achieve accurate and scalable online network simulation. Accuracy is 

guaranteed through packet level detailed simulation. To address scalability issues, the basic 

approach is to use a distributed conservative discrete event simulation engine to exploit the 

parallelism available in the network simulation problem. Section 4.5 addresses the issue of 

scaled real-time execution. This is the base of coordination between multiple simulation 

modules. And the ability to control resource and network speeds in an online simulation (as 

opposed to emulation) enables the MicroGrid to support arbitrary performance ratios between 

elements in a simulation.   
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Chapter 5 System Design 

The main capability of the MicroGrid is to allow grid experimenters to directly execute 

their applications in a virtual grid environment. The MicroGrid can exploit either homogeneous 

or heterogeneous physical resources. This chapter describes the MicroGrid 2.4.5 

implementation, released in June 2004 and available from http://www-csag.ucsd.edu/.  The 

MicroGrid 2.4.5, the latest in a series of MicroGrid implementations which stretch back as far 

as October 2000, supports Grid applications that use the Globus Toolkit 2 middleware 

infrastructure. 

This chapter is organized as follows. Section 5.1 provides an overview of the MicroGrid 

system design. Implementation of the CPU controller for computation resource modeling is 

introduced in Section 5.2. Following that, Section 5.3 presents the details of network modeling, 

and Section 5.4 focuses on improving the scalability of network simulation using traffic based 

load balance.  

5.1 The MicroGrid Overview 

We have designed and implemented a tool called the MicroGrid which enables accurate and 

comprehensive study of the dynamic interaction of applications, middleware, resource, and 

networks.  The MicroGrid creates a virtual grid environment – accurately modeling networks, 

resources, the information services (resource and network metadata).   Thus, the MicroGrid 

enables users, grid researchers, or grid operators to study arbitrary collections of resources and 

networks.  Further, the MicroGrid provides transparent virtualization, allowing the direct study 

of complex applications or middleware whose internal dynamics are difficult to model 
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accurately.  That is, real application software and middleware can be used unchanged and be 

executed on arbitrary virtual grid structures.  In short, the MicroGrid provides a virtual grid 

infrastructure that enables scientific and systematic experimentation with dynamic resource 

management techniques and adaptive applications by supporting controllable, repeatable, 

observable experiments. 

5.1.1 The MicroGrid System View 
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Figure  5.1 the MicroGrid System View 

The MicroGrid provides an online simulation of virtual grid environments transparently, 

allowing applications to be run unchanged. At launch, the MicroGrid reads a virtual grid 

configuration, and then builds corresponding simulation objects so as to provide the experience 

of running on a virtual grid.  These simulation objects implement models of network elements, 

compute resources, or grid information services.  The MicroGrid can implement the virtual grid 

simulation using essentially any physical resources, including homogeneous clusters, 

heterogeneous grid resources, or even on a single computer. Usually the network simulator uses 

a set of cluster nodes and each node is in charge of simulating a section of the virtual network. 
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The application processes run in different virtual machines which can be hosted by another set 

of physical resources. 

High speed resource simulation is achieved by direct execution of applications and 

middleware on virtual machines. A physical machine can host a few virtual machines and uses a 

CPU scheduler to control the speed and capacity of the virtual machine (Figure 5.1).  Direct 

execution allows experiments to proceed at near real-time. The MicroGrid uses a wrapper 

library which automatically intercepts library functions in user applications, thereby creating 

hooks for the virtual grid simulation system.  Thus MicroGrid users can run any application on 

the MicroGrid by simply re-linking the applications to the “wrapper” libraries; neither changes 

to the application and middleware source codes, nor understanding of them are needed. 

The network traffic from the applications is redirected to an online network simulator by the 

wrapper libraries. Data movement is accurately simulated by the network simulator and 

delivered back to the application at the appropriate time to reflect ‘actual’ network behavior.  

5.1.2 The MicroGrid User View 
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Figure  5.2 The MicroGrid User View 

To use the MicroGrid, a user must: 

1) Specify a set of virtual resources, including network connectivity and protocols. 

a. Network topology (Nodes, including routers and hosts and Network links, link 

capacity and link latency) 
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b. Network protocol (Transport protocols  -- TCP or UDP and Routing protocols – 

OSPF, BGP) 

c. Node properties related to communication protocols (e.g. TCP buffer, send window, 

receive window, segment size, etc.) 

d. Compute (relative CPU speed) 

e. Compute Node Connections into the network   

2) Specify a set of physical resources to be used for the compute and online network 

simulation, which in turn are used to control the deployment of virtual resources to physical 

resources. 

3) Submit a Grid application as a job on the virtual grid, just like on a real Grid environment 

4) Observe the execution of the application, and collect results and performance data 

5.2 CPU Controller 
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Figure  5.3 CPU Controller 

As mentioned in Section 4.2 the MicroGrid uses one CPU controller on each physical host 

to monitor the per process resource utilization of the processes on each virtual machine, and 

preemptively schedules them using SIGSTOP and SIGCONT signals (Figure  5.3). Here we 
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provide more implementation details on how to guarantee accurate CPU quotas for every virtual 

machine in the controller. 

5.2.1 The Challenge 

Although the idea of the CPU controller appears simple, there are two factors that make it 

complex. First, the POSIX.5 thread scheduling mechanism used in Linux is not a real time 

scheduler. Specifically, it has a 10 milliseconds scheduling unit; that is, when ever a process is 

scheduled to run, it can use up 10 milliseconds. Second, an application can be a mix of 

computation and communication; its running time depends on both the CPU speed and the 

network speed. Ideally, the CPU controller and the network simulator can collaborate to make 

for a more accurate simulation. However, this would make both the network simulator and the 

controller more complex. For simplicity and scalability, it is desired that they operate 

independently, while the CPU controller can make scheduling decisions based on the 

observations of how much CPU time the application has used. 

A naïve implementation, which was used in the first release of the MicroGrid toolkit, 

demonstrates the effect of these two factors. The original scheduler starts/stops application 

processes periodically. The period is calculated from the CPU speed of a virtual machine and 

the number of processes loaded on the virtual machine. For example, if the scheduler is to 

control a virtual machine which has allocated 25% of real CPU on which two processes are 

running, it will assign each process 10 milliseconds every 80 milliseconds. 

This mechanism works fine if the application is computation intensive, but has the 

following weakness: 

First, it is not suitable for communication intensive applications, which use little CPU 

resource and spend most of their time waiting for network messages. If the simulation process is 

stopped by the controller just before the arrival of network data, it is not able to respond until 70 
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milliseconds later. This 70 milliseconds latency is purely a simulation artifact and hurts the 

simulation accuracy tremendously. Similarly, if a virtual machine has both communication-

intensive and computation-intensive processes, the computation process can easily use up all 

allocated CPU slots and leave the communication process hungry. This will also introduce large 

communication delay and, potentially, skew message inter-arrival time. 

Second, it allocates CPU resource uniformly to every process on a virtual machine, which is 

unlikely to happen in the real world. If some processes are waiting for disk I/O or network data, 

they will not use much CPU time, while other computation-intensive processes should be able 

to take their quotas. 

5.2.2 CPU Controller with Sliding Window 

From the example above, we can see two key issues for good CPU scheduling. First, to 

prevent unwanted communication delay, an application process should always be ready to run if 

it has not used up its available CPU slots. Second, a computation-intensive process should be 

able to use all of the CPU quota allocated to its virtual machine; other given processes on the 

same virtual machine do not take their own slices.  
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 decides the sliding window size for every virtual machine 

while (simulation is running) { 

 polls the CPU usage information from the /proc  

 for (every virtual machine) { 

  calculates the CPU usage percentage during recent sliding window   

  if exceeds the CPU quota, then 

   stops all processes on it 

 }//end of for  

sleeps until next scheduling point 

} //end of while 
  

Figure  5.4 Slide Window CPU Controller 

To address these two issues, we design the sliding window scheduling mechanism. Instead 

of proactively starting/stopping processes periodically, the controller lets the OS schedule all 

processes on a given virtual machine freely, and simply monitors their CPU usage in the 

background. The scheduler will only stop processes on a virtual machine when they have used 

up all the CPU time allocated to them. If the virtual machine has been idle for a while, it can 

accumulate some “credits” that allow for quick response following network data arrival or I/O 

event completion. To prevent a machine from accumulating too many credits, the controller 

uses a sliding window algorithm to track its recent CPU usage. The pseudo code of the CPU 

controller is presented in Figure  5.4. 

Because Linux schedules processes in 10ms units, called “jiffy”s, the controller uses a 

window size measured in the units of jiffies.  In order to minimize simulation error, we try to 

keep the sliding window as small as possible. Since communication latency may be masked by 

scheduling granularity, we determine the minimal sliding window size as follows: 
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Suppose E is the design accuracy error and p is the scaled virtual machine speed (fraction of 

physical CPU), the sliding window size (w jiffies), and the available jiffies in a sliding window 

n should satisfy: 

 w = round(n/p)  and | 1 – n/(p*w) | < E 

For every virtual machine with a given E and p, we can first find the smallest n that satisfies 

the 

| 1 – (n/p)/round(n/p) | < E 

Then we can calculate the sliding window size w, which is the smallest sliding window to 

satisfy the accuracy error E (set to 5% in our implementation).  For example, if we have a 1GHz 

machine, and we want to simulate a 600MHz machine with simulation rate 2, then this virtual 

machine should take p=(600/1000)/2 = 30% CPU of this physical machine. So we need to find 

the smallest n that satisfies: 

 | 1 – (10n/3) / round(10n/3) | < 0.05  

In practice, since n is usually a small integer, we can just try 1,2,3 ,… in sequence, and stop 

at the first number that satisfy the inequation above. Here we can get n equal to 2, and then set 

the sliding window size w to round(n/p) = 7. 

5.2.3 Discussion 

The sliding window mechanism allows simulation of large numbers of machines (100’s to 

thousands) on a small number of machines. Further, since each virtual machine has its own 

window size, grids with extremes of heterogeneous performance from slow to fast machines can 

be modeled accurately on the same physical machine. 
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Figure  5.5 Possible Inaccuracy from Large Sliding Window Size 

However, reducing E often leads to larger sliding window size, which may lead to 

simulation error for applications which have mixed computation and communication. The major 

reason for this is that the CPU controller has no idea whether a waiting process is waiting for 

network delay, or is just scheduled out by the operating system. For example, Process A and 

Process B are supposed to use half of the real CPU on two physical machines. Both of them 

stop after using ¼ of the sliding window size time, one due to the network I/O and the other due 

to the host OS scheduling. At the ¾ sliding window point, process B is re-scheduled to run by 

the OS, and the CPU controller should let it use up the rest of the sliding window. Process A is 

also woken-up by the completion of network I/O at the same time, and it should be stopped by 

the CPU controller, since it should only use ¼ of the real CPU time due. Currently the CPU 

controller cannot distinguish these two cases, and it will always grant another ¼ sliding window 

time to Process A. 

So under some conditions, we may still have large inaccuracies: such is the case when an 

application has mixed computation and communication with some special structures, and the 

sliding window size is large in comparison to communication latency. As we will show in our 

validation experiments, with reasonable design accuracy error E, this situation rarely happens 

and has little effect on overall application performance. 
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5.3 Scaled Real-time Online Network Simulation 

Network modeling is achieved by MaSSF. MaSSF (pronounced “massive”) is a scalable 

packet-level network simulator that supports direct execution of unmodified applications. 

MaSSF consists of four parts. 
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Figure  5.6 The MaSSF Scalable Network Simulation System 

1) Simulation Engine:  MaSSF uses a distributed simulation engine based on DaSSF [56]. 

It utilizes an MPI-connected cluster system to achieve scalable performance. The original 

simulation engine, executable only in pure simulation mode, has been modified to operate in a 

scaled real-time mode (as discussed in Section 2.3). This simulator can run in a scaled-down 

mode when the simulated system is too large to be executed in real time on the available 

hardware. With the global coordination of the MicroGrid, this feature provides extreme 

flexibility to accurately simulate a wide range of networks accurately. 

2) Network Modeling: MaSSF provides necessary protocol modules for detailed network 

modeling, such as IP, TCP/UDP, OSPF, and BGP4. We have built simplified implementations 

of these protocols which maintain their behavior characteristics. We also use a network 

configuration interface similar to a popular Java network simulator implementation, SSFNet[57], 

for user convenience. 
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3) Online Simulation Capability: To support simulation of traffic from live applications, 

we employ an Agent module which accepts and dispatches live traffic from the application 

wrapper to the online network simulation. Traffic is also delivered to application through the 

Agent module. 

4) Live Traffic Interception: Application processes use a wrapper library called 

WrapSocket to intercept live network streams at the socket level. The WrapSocket then talks to 

the Agent module to redirect traffic into the network simulator and vice versa. WrapSocket can 

be either statically or dynamically linked to application processes and requires no application 

modification. 

These components and their relationship are illustrated in Figure  5.6. In the following 

sections we will present a more detailed description and rationale for our design choices. 

5.3.1 Network Modeling 

MaSSF’s goal is to enable detailed modeling and simulation of Internet protocols and 

networks. It uses object-oriented simulation components to construct a network, setup network 

protocols running on various hosts and routers, and create/accept traffic to be simulated. Traffic 

can be created using traffic generation modules or can be imported from live applications. 

Network traffic is simulated at the IP packet level and every network packet movement is 

represented by a simulation event. MaSSF models the hop by hop movement of IP packets 

through the network, including link transfer delay, queuing delay in router queues, and packet 

drop.  The simulation engine has a scaled real-time scheduler that delivers events at the exact 

time specified by the event timestamp. In this way, we can capture link congestion and network 

dynamics in the real world. 
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5.3.1.1. Network Protocol Stack 

Like the Click Modular Router[58] and SSFNet[57], MaSSF provides a batch of protocols, 

such as IP, TCP, UDP, OSPF, and BGP, and some network elements, like hosts, routers, links, 

and switches, that can be used to construct a network. For example, a host can be configured 

with IP, TCP, and Socket protocols, plus an httpClient traffic generation module or a live traffic 

Agent module.  A router can be configured with IP, TCP, OSPF modules as an internal 

Autonomous System (AS) router and it can also be configured with IP, TCP, BGP modules to 

be used as a BGP router. With these basic components provided by MaSSF, users can construct 

a network entity using any reasonable module combination.  Moreover, users can also write 

their own protocol modules for new applications or network protocols. 

httpServer Agent 

socketMaster

tcpSession
Master 

udpSession
Master 

IP 

NIC 

Connection to other host or router  

Figure  5.7 Protocol Stack for a Host with httpServer and Agent 

All protocols running on a host or router are constructed as a protocol stack with well-

defined interfaces to facilitate the data movement along the stack. Figure  5.7 illustrates the 

major network elements and protocol sessions that are used in a host model. This host is 

equipped with one network interface card (NIC), which is connected to another host or router. 
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The host has an httpServer application running, which uses a socket interface, just like in a real 

operating system, to communicate with the TCP protocol session masters at the transport layer. 

A TCP or UDP session is created when a request arrives from the application, and is torn down 

when the session is finished. An IP layer is required to manage packet sending, receiving, and 

forwarding by the NIC. This host also has an Agent protocol module, which means it can accept 

real traffic from live applications. Figure  5.8 is a router equipped with two NICs, with both 

BGP and OSPF routing protocols. 
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Figure  5.8 Protocol Stack for a Router Running BGP and OSPF 

5.3.1.2. Network Topology and Configuration 

The first step in network simulation is to provide the topology and configuration of the 

network to be simulated. In MaSSF, the input network is described by the Domain Modeling 

Language (DML). MaSSF models are self-configuring - that is, each MaSSF class instance can 

autonomously configure itself from a configuration file in DML format [59].  
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DML has a simple syntax: it is a list of attributes. The key of the attribute is an identity and 

the value of the attribute can be a number, a string, or another attribute list enclosed in brackets. 

DML is a recursively defined list of key-values. Logically, a DML file can be viewed as a tree. 

The root and all internal nodes represent a list of attributes and all leaf nodes represent attributes 

with simple values. All nodes can be identified by a key path starting from the root, like the 

hierarchical Java module name.  

An input DML file specifies the network topologies, including network entities (host/router) 

and links between entities. The link latency and bandwidth are also specified in the DML file.  

For each entity, the user can also decide the protocol stack.  Figure  5.9 and Figure  5.10 are 

example DMLs corresponding to the entities in Figure  5.7 and Figure  5.8 respectively. Figure 

 5.11 is a simple network with 2 hosts and 1 router. The Net, host, router, link, attach, interface, 

and graph are reserved attribute keys for network specification. The graph attribute represents 

the protocol stack installed on an entity, and the link attribute is used to represent a network 

connection. The attach attributes are the NICs connected to a link. 

 host [ id 0 
 route [ dest default interface 0 ] 
 interface [ id 0 bitrate 100000000 latency 0.0001 ] 
 graph [ 

ProtocolSession [ name agent use Agent] 
ProtocolSession [ name httpserver use httpServer ] 
ProtocolSession [ name socket use socketMaster ] 
ProtocolSession [ name tcp    use tcpSessionMaster ] 
ProtocolSession [ name ip     use IP ]  

] 
] 

 

Figure  5.9 A Host with Agent and httpServer 
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 router [ id 1 
 interface [ id 0 bitrate 100000000 latency 0.0001 ] 
 interface [ id 1 bitrate 100000000 latency 0.0001 ] 
 graph [ 

ProtocolSession [ name bgp use BGP4] 
ProtocolSession [ name ospf use sOSPF ] 
ProtocolSession [ name socket use socketMaster ] 
ProtocolSession [ name tcp    use tcpSessionMaster ] 
ProtocolSession [ name ip     use IP ]  

] 
] 

 

Figure  5.10 A Router with OSPF and BGP Routing Protocols 

Net [ id 0 
 host [ id 0 interface [ id 0] 
 host [ id 1 interface [ id 0] 

router [ id 2  
 interface [ id 0 ] 
 interface [ id 1 ] 
] 
link [attach 0(0) attach 1(0) attach 2(1) ] 

] 
 

Figure  5.11 A Simplified DML for a Network with 2 Hosts and 1 Router 

The DML file has all information regarding the network. This information is parsed and 

stored in a database by MaSSF at initialization phase. MaSSF uses this database to create the 

virtual hosts and routers, setup network connections, and build the forwarding table. After 

initialization, the DML file and the database are no longer necessary, all simulated network 

elements work independently, just like in the real world network.  

5.3.1.3. Addressing in DML  

As in the DML examples, every host or router is identified with an id attribute and every 

NIC can also be identified an interface id attribute. The link attribute is used to represent a 

network connection, and it uses the NIC identities to represent which NICs are connected to this 

link. For example, the  
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link [ attach 0(0) attach 1(0)  attach 2(1) ] 

represents that there is a switch connecting host 0, host 1, and router 2, using interface 0, 0, 

and 1 respectively.  

The Net is also identified by the id. MaSSF supports hierarchical networks with nested Net 

attributes. And each Net attribute can have multiple sub Net attributes, identified with different 

id attributes. The Net, router, host, and interfaces defined in such a manner can be uniquely 

addressed using the NHI scheme, where NHI represents the Network-Host-Interface. The 

network address of Net attributes is formed by concatenating the id of the network definition at 

each level starting from the DML root, separated by colons. Similarly, the NHI address of a host 

or router is the encompassing Net addressing concatenated with the id of the host, separated by 

colons. The NHI address of a NIC is the concatenation of Net and host address, followed by the 

NIC id, enclosed in parentheses. For example, an NHI of 4:2:12(3) represents the third NIC of 

host 12 in the network 4:2.  

The NHI scheme can be used to globally address any host, router, or interface, uniquely. 

However, when used in a DML file, the network address essentially starts from the root of the 

DML Net; typically a local address is sufficient. For example, when we define a link in Net 4, 

only the local address is used 

 Link [ attach 2:12(3) …] 

In this way, a sub-network can be defined without knowing the upper-level network, and a 

single definition can be used multiple times by different networks. This makes the DML quite 

flexible when defining a hierarchical network. 

NHI addressing is only used inside the DML file, and external users require IP addresses. 

The user can specify an IP address for every NIC of the hosts and routers in the DML file or 

MaSSF can automatically assign IP addresses according to CIDR address mechanism [60]. 
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After assigning an IP address, the forwarding table will be setup automatically, according to the 

configured routing protocols.  

5.3.1.4. Routing in MaSSF 

As in a real world router, packet forwarding in the MaSSF router is decided by a local 

forwarding table, which is calculated by the routing protocols. We have implemented the OSPF 

protocol for intra-domain routing and BGP4 protocol for inter-domain routing. As we already 

see in the examples, these protocols can be installed in the router protocol stack. 

Two versions of OSPF are implemented in MaSSF. The first is the static OSPF, which only 

calculates the shortest-path routing of an AS at the beginning of simulation and it will not 

respond to network changes during the simulation. However, it can still accept dynamic routing 

information from BGP protocols. The second fully implements the specification of OSPFv2 [61] 

and recalculates the routing table dynamically when experiencing router failure, link failure, or 

heavy traffic congestion. Compared to the dynamic version, static OSPF is much simpler, and 

requires less memory. Since all routers in an AS has the same view of the network, we can just 

keep a single network database in an AS, and calculate forwarding tables for every router 

together. The network topology database can be released after initialization. Dynamic OSPF, on 

the other hand, has to keep the AS network topology information and calculate the forwarding 

table by itself. In practice, we only use the static OSPF for large scale simulation, and use the 

dynamic OSPF only when we really care about the routing dynamic inside an AS. 

The BGP protocol in MaSSF is based on the SSF.OS.BGP4 model from SSFNet. The focus 

of porting the BGP4 model from SSFNet to MaSSF, is not on to develop novel BGP simulation 

technology, instead, the focus is to exploit the scalability offered by the MaSSF simulation 

framework  So, functionally the MaSSF implementation is fully compliant with the BGP-4 

specification in the RFC1771[62], just like the original SSFNet BGP model. And it is also fully 
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validated with the test suits in SSFNet, covering functionality such as basic peering session 

maintenance, route advertisement and withdrawal, route selection, route reflection, and internal 

BGP.  

One major consideration in our BGP implementation is the reduction of memory 

consumption for better scalability. For a large network simulation, one big memory consumer is 

the BGP routing table, since it grows exponentially with the number of ASes.  To alleviate this 

memory problem, we fully reuse routing entries among the three parts of BGP Routing 

Information Base (RIB) [63]: Adj-RIBs-In, Loc-RIB, and Adj-RIBs-Out . Unlike the Java 

automatic memory management of SSFNet, MaSSF manages all objects using reference 

counters which reduce the memory consumption by 60%. The other big memory consumer is 

the local forwarding table. In MaSSF, the BGP routers can work with OSPF routers insider an 

AS and only broadcast default routing to external networks, instead of the whole routing table in 

the BGP router. This is can greatly reduce the memory consumption and computation overhead 

for a large AS with hundreds of internal routers. Of course the user can disable this feature if 

they want to manually control the routing policy inside the AS. 

5.3.2 Online Network Simulation 

Online network simulation is to enhance traditional network simulation with supports for 

direct execution of applications. Two major issues are discussed here, one is how to intercept 

live application traffic and the other is how to inject the traffic to the traditional network 

simulation. 

5.3.2.1. Socket Level Interception 

In order is to support direct execution of real applications in MaSSF, we need to intercept 

live traffic from applications and present it to the network simulator. It can be achieved either at 

the socket level by intercepting the send(), recv() network related system calls or at the IP 
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packet level by manipulating the IP packet directly. The difference between these two 

approaches is whether or not the operating system’s TCP stack (see Figure  5.12) is used in the 

data movement path.  The advantage of the second approach is that it does not model the TCP 

stack, leading to a much simpler implementation. However, using the original TCP stack 

requires running the simulation in real time, since the OS TCP stack observes the real packet 

RTT (round trip time) and adjusts its send rate according the RTT it observed. This is a big 

constraint, since in many situations the physical resources are not fast enough to achieve real 

time simulation. So MaSSF takes the first approach, intercepting the live traffic at socket level 

for scaled-real time simulation. 
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Figure  5.12 Traffic Flow in a Real Operating System 

As shown in Figure  5.13, MaSSF intercepts all network related system calls using a library 

called WrapSocket, which can be either statically or dynamically linked to application programs. 

Every virtual host has a corresponding Agent inside the simulator, and WrapSocket sends the 

Agent a logical reference for each intercepted network operation. A detailed TCP stack is 

implemented inside MaSSF and packet movement and timing are accurately simulated. Only 

packet references are routed in the simulated network, while the real data stays in WrapSocket 

and is delivered directly to the destination processes’ WrapSocket.  There are no extra data 

copies, and minimal real network traffic is incurred. When all required data arrive at the 
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destination Agent, it allows WrapSocket to successfully return calls to recv(). At this point, we 

expect that all real data is already waiting in WrapSocket, since it is transferred directly through 

the fast local network. The application then returns from the call to recv() with the real data.  
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Figure  5.13 Traffic Flow in MaSSF 

In our approach, all network behaviors (including TCP sliding window management, link 

congestion, and packet drop, etc.) are precisely modeled inside the simulator, and the only 

source of distortion is the delay for transferring a logical reference from WrapSocket to the 

Agent.  Since this is a small amount of data (~60 bytes), moving across a fast local link, its 

impact on the simulation of wide-area network delay is negligible.  

5.3.2.2. Efficient Request Handling 

Every network operation is translated into a request to the simulator and after processing the 

result will be sent back to the wrapper. Since the delay between the wrapper and the Agent 

module is not modeled by the simulator, it must be handled as fast as possible. And the most 

important factor is that no pending request blocks subsequent requests even if its own semantics 

describe it as a blocking operation; these operation include blocking connect, recv, and send 

operation. The reason for this is that a simulation engine node may support many virtual hosts, 
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with many application processes connected to it.  If the request handler blocks on one request, it 

cannot handle requests from other processes or from other virtual machines. 

Based on these considerations, the simulation module is implemented with the following 

features. 

1) Non-blocking Request Handling: All event handling must be non-blocking. For those 

blocking operations, the block happens only in the wrapper; all operation within the simulator is 

non-blocking. To achieve this, we exploit callback mechanisms in the simulator, implemented 

through the Continuation construct. 

Continuation { 

  int success(); 

  int failure(int err_no); 

}; 

For every blocking request, a continuation object is created and registered in the simulator. 

For example, a blocking read operation can create and register a continuation on the 

corresponding TCP session. When new data arrives, the simulator will check whether any 

pending read continuation is registered and whether it is satisfied, if so, the success() function 

will be called and the read result is sent back to the wrapper.  

2) Event-based Request Dispatch: Every simulation node has a thread pool to accept 

requests. Requests form the wrapper are first put into an event queue, and then handled by a 

thread pool in FIFO model. The event handling is non-blocking, so only a small number of 

threads are needed to handle a large number of clients (application processes). 

3) Optimization for Select and Poll: All function calls are handled in a RPC-like approach, 

except the select and poll calls. These calls are different. They have timeout mechanism with 

the timeout values can be quite small and called very frequently. If they are implemented in a 

straight forward fashion, that is, one request for per call and timeout in the simulator, the 
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overhead for some applications could be so large that it would affect the accuracy of the 

simulation. Hence, these calls are handled separately. We do not send out a request for every 

call, instead, we only send out a request when it is different from the last request, such as when 

selecting on different socket sets. Timeouts only happen in the wrapper, and the simulator is not 

involved. An old selection request will register a continuation, and it will either result in success 

or be overwritten by a new selection on that socket. An invalid selection result must be sent 

back to the wrapper when that selection has timeout. The wrapper can use sequence numbers to 

distinguish invalid results.  
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Figure  5.14 Request Throughput for a Single Simulation Engine 

Figure  5.14 shows the request throughput of a single simulation engine node, versus 

concurrent number of clients. For a single client, the throughput is about 2200 requests per 

second, and the total throughput can reach 65K requests per second. This throughput seems 

small, but it can support quite a fast network, since every request can correspond to a send 

operation, which can be much larger than a network packet. Also, all simulation engine nodes 

provide fully parallelized on requests handling, we can increase simulation engine nodes 

numbers if necessary. 
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Figure  5.15 shows the request delay, versus the concurrent client number. The minimal 

request delay is about 0.47 milliseconds, which is quite small, when considering the wide area 

network delay (more than 10 milliseconds) plus the possible slowdown rate. The delay increases 

slowly until it reaches the throughput bottleneck with 60 full speed clients.  
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Figure  5.15 Request Latency of a Single Simulation Engine Node 

5.4 Traffic Based Load Balance for Scalable Simulation 

In this section, we discuss the details of our automatic load balancing for scalable network 

simulation.  

5.4.1 Elements of Network Mapping Problem 

To achieve scalable performance, MaSSF uses a distributed simulation engine running on a 

cluster. Given a network topology and available cluster nodes, the MaSSF partitions the virtual 

network to multiple blocks, assigns each block to a cluster node, and simulates in parallel, as 

shown in Figure  5.16. Every cluster node runs a discrete event simulation engine and events are 

exchanged among cluster nodes. To maintain the simulation accuracy, these cluster nodes also 

need to synchronize periodically.   
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Figure  5.16 Mapping Routers to Physical Resources 

For large simulations, the network mapping cannot be done manually or casually. Instead, 

the mapping is a critical and demanding challenge, since we need to achieve load balance across 

all cluster nodes.  This is difficult because the workload on each physical node varies greatly, 

depending both on the virtual mapping and network traffic in that subset of virtual network 

(Figure  5.17).  Furthermore, two more optimization goals should be considered.  One is to 

maximize link latency across partitions to reduce the frequency of synchronization among 

simulation engines and maximize concurrency, a critical element of scalability for large scale 

simulation. This feature is an attribute of our MaSSF system and all other network simulators 

based on conservative discrete event simulation engines.  The other optimization goal is to 

minimize the communication of simulation events between simulation engine nodes.  It is 

expensive to transfer a simulation event across physical nodes both in terms of computation 

overhead and communication latency. Also, the physical network of the simulation engine 

nodes is often a performance bottleneck for the whole simulation. Hence, it is important to 

minimize this communication.  

The problem above is called the network mapping problem. To achieve the optimal load 

balance even with known traffic is a NP-Hard problem[55]. However, in practice, a network 

mapping problem can be naturally modeled as a graph partitioning problem and solved with the 

classical graph partitioning algorithms.  
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Figure  5.17 Load Variation over the Lifetime of Simulation 

5.4.2 Modeling Network Mapping as a Graph Partitioning 

Problem 

Given an input graph G = (V, E) with weighted vertices and edges, typical graph 

partitioning  algorithms can partition it into k parts such that, each part has roughly the same 

number of vertex weight and the edge-cut (the number of edges) that straddles partitions is 

minimized. By setting the vertex and edge weights appropriately, mapping a simulated network 

to a set of physical simulation resources can be modeled as a graph partitioning problem and 

solved using a generic graph partitioning algorithm.  

As a well studied problem, we expect that any high quality graph partitioning package (in 

this case METIS[64]) should produce results comparable to other graph packages. So our 

challenge is how to apply the graph partitioning algorithm in METIS to solve the mapping 

problem by defining the suitable input graph G, constraint conditions, and optimization 

objectives for the graph partitioning algorithm. Our choices are discussed in the following 

subsections. 
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5.4.2.1. Input Graph 

The input graph G is defined by two categories of parameters: network structure and traffic 

information. The network structure includes detailed network topology, link latency, and link 

bandwidth. In MaSSF, this information is stored in the network description file and can be 

easily translated to a vertex and adjacent edge graph. Network traffic information is used to 

define edge weights in the graph, and it may also affect vertex weights. In general, network 

traffic information includes background traffic and foreground applications traffic, derived from 

trace, model, or even live applications.  How we approximate and model the expected traffic for 

the simulation is the distinguishing key characteristic of our three different load balance 

approaches. We will further focus on how to get that information in Section 5.4.3. 

5.4.2.2. Constraints 

In a graph partitioning problem, the constraint is the vertex weight to be balanced among 

multiple vertices. In the network mapping problem, the vertex weight can be defined as 

weighted sum of computation and memory requirement on each simulation engine node. In the 

MaSSF implementation, the computation requirement mainly comes from the logic for packet 

processing, which depends on network connection, routes, and traffic intensity. It is calculated 

based on the maximal bipartition flow of all traffic flowing through a network node. The 

memory requirement is mainly based on the routing table size. The routing table size is in the 

order of O(n2), where n is the number of routers in an AS (Autonomous System). We also use 

multiple constraints to balance different kinds of vertex weights together. 

5.4.2.3. Objectives 

In a graph partitioning problem, the objective is the edge-cut to be minimized. In the 

network mapping problem, the optimization can use two objectives, which means two different 



78 

 

ways to weight the edges. The first one is to maximize link latency across partitions. This can 

reduce the frequency of synchronization among simulation engines and maximize concurrency 

in the simulation, which is very important for scalability for large scale simulation. This feature 

is an attribute of our MaSSF system and all other network simulators based on conservative 

discrete event simulation engines.  

The second objective is to minimize the communication of simulation events across 

simulation engine nodes, since it is expensive to transfer a simulation event across physical 

nodes both in terms of computation overhead and communication latency. Also, the physical 

network of the simulation engine nodes is often a performance bottleneck for the whole 

simulation; hence, it is important to minimize this communication. With detailed traffic 

information, we can estimate the number of simulation events on each single link and use it to 

calculate the edge weight. How to get such traffic information is the major topic of Section 

5.4.3. 

5.4.2.4. Multi-Objective Graph Partitioning 

In last subsection, two objectives are described. Both of them are important and sometimes 

in opposition.  

 1) Apply the single objective algorithm for maximal link latency across partitions, 

get the optimization edge-cut Clatency. 

2) Apply the single objective algorithm for minimal network traffic across 

partitions, get the optimization edge-cut Cbandwidth. 

3) Assign each edge weight to 

bandwidth

bandwidth

latency

latency

C
w

C
w

conbined ppw )1( −+=  

where p is the user controllable weight of the latency objective. 

4) Apply the single objective algorithm with the new normalized edge weights. 
 

Figure  5.18 The Multi-Objective Graph Partitioning Algorithm 
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The challenge is to figure out how to set edge weights to represent the requirement of both 

objectives, and still provide the user predictable control on tradeoff. A simple combination-

based approach (e.g. simply add two weights to a single weight) does not make sense.  

Applying the algorithm presented in [42], we can combine two dissimilar weights in a 

predictable way and use the available single objective METIS partitioning package. This 

algorithm is based on the intuitive notion of what constitutes a good multi-objective partition. 

That is, a good solution should be close to the optimization solution for each single objective. 

Applying this approach on our network mapping problem, we get the algorithm in Figure  5.18: 

Network 
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Partitioned 
Network 

Traffic 
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Graph 
Preparation 

G Constraints 
Objectives 

Graph 
Partitioning 
Algorithms

 

Figure  5.19 Process of Network Mapping 

In summary, the mapping process can be modeled as shown in Figure  5.19. First, it takes 

the network structure and traffic information as input, creates a graph G, and builds objectives 

and constraints of graph partitioning algorithms. Then it applies partitioning algorithms to get 

the partitioned network. The partitioned network incapacitates the mapping of emulated 

network nodes to physical resources. We may have different abstraction of network mapping 

problems and use different constraints and objectives in the graph partitioning algorithm; 

however, we believe what we present above is straightforward and should have reasonable 
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results with small overhead. The problem left is how to collect and use the traffic information, 

which will be discussed in the following section.  

5.4.3 Traffic Based Network Mapping  

Three different approaches are explored for network mapping.  These approaches vary in 

how network topology, background traffic, and application traffic are represented and used in 

the partition.  The ability to predict the simulation workload (i.e. network traffic) accurately 

enables better partitioning and therefore better load balance.  However, there are tradeoffs 

between the specificity of the information used and the generality of the partition produced.  

5.4.3.1. Network Topology-Based Mapping (TOP) 

Our first approach only considers the simulated network topology, link bandwidth, and 

latency, in which each virtual node is weighted with the total bandwidth in and out of it.  The 

optimization objective is to maximize the link latency between simulation engine nodes, as 

discussed in Section 5.4.1.  This maximizes decoupling, supporting efficient parallel simulation. 

This basic approach is simple and fast, and represented the state of art as we began. 

Therefore, it forms a performance baseline for our experiments.  It should work well for well-

engineered networks with evenly distributed traffic. In such networks, the link bandwidth 

usually determines the routes that are placed over the links, and since networks are typically 

engineered to match the demand, link bandwidth is closely related to real traffic.  For example, 

this model is expected to be effective when we want to study the web traffic on Internet, which 

is composed of lots of small web browsing flows. 

5.4.3.2. Application Placement-Based Mapping (PLACE) 

With precise traffic information, we can do a better mapping. The second approach is based 

on the observation that simulated network traffic typically consists of a background and a 
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foreground load. Foreground traffic is created by the target application that the user wants to 

study, and background traffic is used to provide realistic network conditions. Both traffic loads 

are estimated separately, and then combined to predicate the aggregated traffic data for better 

network mapping.  We call this approach PLACE. 

The background traffic is generated using simple traffic models based on the network 

topology, and can be explicitly controlled by the user of the network simulator.  In this case, it 

is reasonable that all traffic generators can provide some prediction of their generated traffic 

load, for example, specifying the average traffic bandwidth between two endpoints. Because the 

background traffic represents an aggregate of traffic, such a gross characterization can be 

reasonably accurate.   

Due to the nature of configuring application, the foreground load is typically the live traffic 

from a small set of application programs.  Unlike background traffic prediction, it is difficult for 

users to predict the traffic of the real application.  First, the live traffic has complex dynamic 

behavior that is hard to model (that is why we need a network emulator to study it). Second, 

users may not have the required knowledge to describe this information (lacking either 

application knowledge or the computer systems knowledge).  As an approximation, we 

determine the traffic injection points of the application, where its processes attach to the 

simulated network, assuming that the application fully utilizes the network link at each injection 

point and every node talks to all other nodes with evenly distributed bandwidth.  While this 

approximation may seem coarse at first glance, it is acceptable when considering that most 

target applications in simulation are complex and network intensive.  

With the source/destination pairs of all traffic flows, the aggregated traffic on each link can 

be computed by summing the contribution from each flow. To identify the routes used in the 

simulated network, we instantiate the simulated network and detect the actual routes used 

(based on dynamically generated routing tables and routing protocols). To get the routing 
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information, we implement the ICMP protocol inside MaSSF, and use the real Linux traceroute 

tool to discovery the routing paths between each source-destination pair. To reduce the number 

of traceroute execution required, we could use one representative endpoint for each sub-

network and only discover the route paths between those sub-network representatives. 

With this predicted traffic information, the approach in Section 5.4.3.1 can be improved by 

recalculating vertex/edge weights. This extra information also enables another objective, which 

is to minimize the traffic across partitions. In the approach, the multi-objective graph 

partitioning algorithm described in Section 5.4.2.4 is used. 

5.4.3.3. Profile-Based Mapping (PROFILE) 

The third approach uses profiling techniques to obtain traffic information automatically 

from simulation experiments.  The profiles are then used to estimate future network use, and to 

improve the network mapping.  Typically this involves an initial simulation experiment using an 

initial partition and traffic monitoring. The simulation yields detailed traffic information and the 

network can be repartitioned based on this information.  

The critical challenge for this approach is the efficient collection and representation of 

traffic information during profiling, and the use of this information to repartition the network. In 

MaSSF, we implement the Cisco NetFlow-like [65] function on each simulated router.  This 

functionality is used to record every traffic flow on each router to a local file.  The dump files 

record the average bandwidth and duration of every flow on every router. Parsing the dump files 

allows computation of the aggregated traffic on every router and link in the network.  By tuning 

the granularity of the NetFlow, we can get detailed network traffic information with small 

overhead. 

In our implementation, the real network traffic data does not actually travel through the 

simulator; only packet references are processed by it. Instead of using the real network 
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bandwidth (MB/s) as the bandwidth measurement, the number of packets in a flow is used, 

since the real load in the simulator depends on the number of packets it processes.  The live 

traffic injection overhead is also measured by the number of requests coming from the 

application.  

With much more accurate traffic information about the virtual network from the profile data, 

the same multi-objective graph partitioning algorithm described in Section 5.3.2.4 is applied to 

get better load balance.  

5.4.3.4. Preliminary Results 

We implemented these three partition algorithms in the MaSSF and applied them to the 

network simulations, with different network topologies and different applications. The network 

topologies are in range of 60-300 hosts and routers, simulated with less than 10 physical nodes 

(Table 5.1). These studies show that exploiting static topology and application placement 

information can achieve reasonable load balance, but a profile-based approach further improves 

load balance for even large scale network simulation. In our experiments, PROFILE improves 

load balance by 50% to 66% and simulation time is reduced up to 50% compared to purely 

static topology-based approaches. More details are reported in [66]. 

Table 5.1 Network Topology Setup in Premier Study 

Network 

Topology 
Router Host 

Simulation 

Engine Node 

Campus 20 40 3 

TeraGrid 27 150 5 

Brite 160 132 8 
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5.4.4 Hierarchical Load Balance Approach 

5.4.4.1. The Small Achieved MLL Problem 

When we apply the TOP and PROF approaches to larger networks (e.g.  10,000 routers 

running on 100 nodes), neither of them gets satisfactory results. Checking the partition output 

manually reveals that the common reason for poor performance is that the achieved Minimal 

Link Latency (MLL) across partitions is insignificant when compared to the synchronization 

cost.  This produces an overall simulation efficiency that is quite low. For example, for one 

network of 10,000 routers, the achieved MLL was only 0.1ms; far less than the synchronization 

cost of ~0.58ms for 100 simulation engine nodes (see Figure  5.20). Synchronization cost is the 

time used by the simulation engine nodes for global synchronization, which need to be executed 

every MLL time. In such a situation, the majority of the time will be spent in synchronization – 

even perfect load balance would only moderate efficiency.  This situation is quite different from 

the 1ms MLL for a 160 router network and 0.9ms synchronization cost for 8 simulation engine 

nodes in our previous experiments[66].  
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Figure  5.20 Synchronization Cost of the TeraGrid NCSA Cluster 
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5.4.4.2. Understanding Achieved MLL 

The example above exposes a major problem with the existing load balance approaches.  In 

TOP and PROF mappings, the link latency is converted to edge weight of the graph G, and 

smaller link latency leads to a larger edge weight. When the graph partitioner archives minimal 

edge-cut across partitions, it is less likely to partition across the link with small link latency, 

since it corresponds to a large edge weight. However, the optimization goal is the not the MLL, 

but the minimum edge-cut (the sum of all edge weights that cross partitions). When we have a 

large graph, the partitioner becomes less sensitive to the MLL, since even the large edge weight 

from a link with MLL may only be a small part of the final edge-cut.   

We may tune the converting algorithm to make the edge weights of small link latencies 

large enough that it is unlikely they will across partitions, but this depends highly on the 

network topology, number of the simulation engine nodes, and the physical synchronization 

cost.  

5.4.4.3. Optimizing MLL 

To address the issue of small achieved MLL, a new hierarchical partition algorithm is 

designed. To avoid partitioning across edges with small link latencies, edges with latencies 

smaller than a threshold, LL, are removed from the input graph (by merging nodes) to the 

partitioner and are added back to the partitioned output later. In this way, we can guarantee the 

worst-case of MLL. However, this produces a new problem —how do we choose the latency 

threshold, LL.  If the threshold is too large, it will damage load balance, while if it is too small it 

will achieve a smaller MLL than possible.   Instead of guessing the threshold, our approach is to 

simply try all reasonable thresholds, create a partition for each, evaluate these partitions, and 

then pick up the best partition.  This is feasible because the partition can be done fast, even for 
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large networks, and different partition outputs can be evaluated without running the simulation. 

The pseudo code for hierarchical partitioning is present in Figure  5.21. 

 

Input: graph G, partition N, and synchronization cost C 

Output: the best partition P of graph G 

Hierarchical Partition: 

Set the initial Threshold of MLL (Tmll) 

Loop through all reasonable Tmll: 

Get the dumped graph Gd(Tmll)  

Partition the Gd(Tmll) using an existing partitioner, and get P(Tmll) 

Evaluate the partition result Pd(Tmll) 

Pickup the best partition Pd(Tmll) 

Get the best partition P of original G 
 

Figure  5.21 Hierarchical Graph Partitioning Algorithm 

This algorithm requires the graph, G, the partition number, N, and the synchronization cost 

of the simulation engine nodes, C.  Figure  5.20 shows the synchronization cost of the TeraGrid 

SDSC cluster, which is used for all simulations in this paper.  We use the synchronization cost 

to set the initial threshold of MLL (Tmll) based on knowledge of the desired number of 

simulation engines. A Tmll is required to be larger than the synchronization cost; otherwise all 

time will be spent on synchronization, giving poor efficiency. Given the Tmll, the original graph 

G is reduced to a dumped graph Gd by collapsing nodes with link latency less then Tmll into a 

single node. Then any existing partition can be applied to the dumped graph Gd and get the 

partitioner output. By increasing the Tmll step by step (0.1ms in our experiments), we can get a 

sequence of partitions, and the remaining question is how to select amongst them.  

To evaluate the candidate partitions, we use an efficiency metric Efficiency (E), which 

consists of two factors, Es and Ec. The first factor (Es) represents the efficiency decided by the 

achieved MLL and is calculated: 

   Es = (MLL – CN)/MLL,  
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where CN is the synchronization cost of N simulation engine nodes. The latter (Ec) 

represents the result of computational load balance and is calculated by:  

Ec = Caverage/Cmax, 

where Caverage is the estimated average load (simulation event rate) on all nodes, and Cmax is 

the max load of all nodes. The final efficiency E is Es * Ec, where larger values of E correspond 

to better partitions.  Maximizing Es and Ec separately does not work because they represent the 

tradeoff between simulation efficiency and available parallelism. Larger Es means better 

simulation efficiency, but it also means less parallelism available, since smaller MLL leads to a 

more coarse-grained partition graph. 

In summary, our hierarchical partitioning approach balances the parallelism and decoupling 

concerns in generating a good network partition.  To do so, it generates and evaluates many 

possible partitions. Because we can create graph partitions and evaluate graph partitions quickly, 

the METIS graph partitioner[64] used in MaSSF can partition a graph with 10,000 vertexes in 

about 10 seconds,  we can consider thousands of possible Tmll. 

5.5 Summary 

In this chapter, we presented the system design and implementation of the MicroGrid 

toolkit. We first introduced the soft real-time process scheduler for computation resource 

simulation, and then the scaled real-time online network simulator MaSSF. These two 

components together can provide accurate and efficient virtual grid modeling. After that, we 

introduced the traffic based load balance algorithms to improve the scalability of the network 

simulator, which is critical to support large scale virtual grid simulation. 
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Chapter 6 Validation 

So far, we have presented our approaches and system design for accurate large-scale virtual 

grid modeling. However, a design with these approaches and techniques alone is insufficient to 

enable the systematic study of dynamic behavior. As any simulation tools, before it can be used 

in any real research studies, it must be validated that the simulation results are accurate 

comparing the real system behaviors; otherwise, it is useless. In this chapter, we provide 

validation of the constituent models and the entire MicroGrid system on applications. 

6.1 Methodology and Experimental Environment 

To validate the MicroGrid system design and implementation, we first provide validation of 

constituent models, including validation of the CPU resource model on one and several virtual 

resources per physical resource and validation of the online network simulation models 

exercised by real transport protocol stacks. Based on validation of different simulation models, 

we provide validation of the whole MicroGrid system on a range of grid application programs 

ranging from kernels to full-blown applications on two grid resource configurations. 

The basic methodology for validation is to run applications, either real applications or 

benchmarks written by ourselves, on physical resources and collect the performance data, such 

as the execution time. Then we use the MicroGrid to simulate the physical resources and 

execute the same applications on simulated environments. Thanks to the capability of direct 

application execution on MicroGrid, the simulated application performance results are directly 

comparable to what we get from the execution on physical resources.  
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All experiments are executed on a 16-node dual 2.4GHz Xeon Linux cluster with 1G main 

memory each, connected by a 1Gbps Ethernet switch. The major metric for validation is the 

percentage of application execution time difference between the simulated environment and real 

environment. Different application and benchmarks are reported in each experiment. 

6.2 Validation of the Computation Resource Simulation 

To test the accuracy of the CPU Controller, a few simple benchmark programs are used. We 

first run them directly on a physical machine, get the real running time T.  Then we run them on 

a virtual machine, which is given different fraction λ of CPU by the CPU Controller, to get a 

real running time Tλ.  So the virtual running time on the virtual machine is λ*Tλ. If CPU 

controller is accurate, the virtual running time should equal to the real running time T and the 

value λ*Tλ/T should equal to 1. 

Two different benchmarks are used in this validation, one is computation intensive and the 

other is a mix of computation and communication, since the accuracy of both kinds of 

applications depends on the behavior of the CPU Controllers. The communication intensive 

applications are left to the validation of network simulation (Section 6.3), since their 

performance mainly depends on the network behaviors. 

6.2.1 Computation Intensive Applications 

This experiment is used to validate that the CPU controller can accurately allocate CPU 

resources to computation intensive jobs. The cpuhog, which only does computation without any 

input/output operations, takes 10 seconds to complete without CPU controller.  Recall that the 

sliding window algorithm in the CPU controller can adjust to the design accuracy error E. In all 

experiments, we set the E to 5%, which means we expect 5% error margin for all validation 

results (see Section 5.2). 
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Figure  6.1 The cpuhog for Single Virtual Resource 

Figure  6.1 are the results for single virtual resource,  which show that when there is only 

one process, the error is almost always in 2%, except when it is near full utilization of the 

underlying physical resource.  At 90% CPU, we observe a 6.7% error.  When there are multiple 

processes, the running time becomes about 6-8% longer.   

To understand the performance of CPU controller with multiple virtual resources on a 

single physical machine, two groups of experiments are executed with three virtual resources 

and five virtual resources on a physical machine respectively.  Each time, the virtual resources 

are created, and one cpuhog is launched on each virtual resource.  Then the average completion 

time is used as the virtual running time to calculate the efficiency rate λ*Tλ/T.  The results are 

shown in Figure  6.2.  The “aggregated CPU speed” is the sum of speeds of all the virtual 

machines.  Most of the tests have an error of less than 4%, with the one exception of a 9% error 

when total CPU is 78%. 
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Figure  6.2 The cpuhog for Multiple Virtual Resources 

The inaccuracy for 90% CPU in Figure  6.1 and for 78% CPU in Figure  6.2 comes mainly 

from the 5% design accuracy error in the sliding window algorithm: Since we allow 5% error 

and we always choose the window size as small as possible, when the virtual machine speed is 

90%, we would schedule the application for six of seven jiffies rather than nine of ten, which 

causes a equivalent speed of 85.7% CPU with 4.8% error from 90% CPU; in the multiple-

virtual resource experiments, each virtual machines has 26% CPU and is scheduled for one jiffy 

every four jiffies, which leads to 25% actually speed with about 4% error for 26% CPU. 

These experiments show that the CPU controllers can efficiently simulate multiple virtual 

resources on a single physical resource and still provide accurate computation resource 

modeling for computation intensive applications. 

6.2.2 Applications with Mixed Computation and Communication 

This experiment is designed to demonstrate that the CPU controller can achieve accurate 

performance for application with mixed computation and communication. As discussed in 

Section 5.2, these applications represent much larger challenge than computation intensive 

applications, because the CPU controller has no idea whether a waiting process is waiting for 
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network delay or is just scheduled out by the operating system. The mixhog executes 

computation and communication combination in loop. We can control the length and ratio of 

computation and communication to check how the CPU controller behaves for different 

application patterns. The CPU controller design still uses a 5% design accuracy error (see 

Section 5.2). 

Figure  6.3 shows the accuracy of the CPU controller under different communication 

granularity. The communication and computation ratio in the mixhog is fixed (1:1, 1:2, and 1:3) 

and the communication time (network delay) changes from 10ms to 100ms in these experiments. 

The errors are always within 10%, except when the communication delay is so small that it is 

comparable to the OS scheduling granularity (10ms).   
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Figure  6.3 The mixhog with Different Communication Granularity 

Figure  6.4 and Figure  6.5 are the results of CPU controller accuracy against different virtual 

CPU speed. We can see that the accuracy changes according to the virtual CPU speed, due to 

the fact that the sliding window size. As we have discussed in Section 5.2, larger sliding 

window size can lead to larger error. When most time the error is less than 10%, the error can 

reach 20% when the virtual CPU speed is at 30%, 40% and 60%.  
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CPU control with 20ms network delay
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Figure  6.4 The mixhog with 20ms Network Delay 

CPU control with 30ms network delay
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Figure  6.5 The mixhog with 30ms Network Delay  

In summary, our experiments show that the CPU controller can model CPU speed 

accurately.  The multiple virtual resources experiments also demonstrate its capability to model 

multiple virtual CPUs on one physical machine accurately. 

6.3 Validation of Network Simulation 

To test the accuracy of the network simulation, the main focus is on checking the 

correctness of simple TCP application, since this simple test involves the most important and 

complex part of the network simulation, the TCP protocol implementation. A majority of 
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network application performance depends on the TCP protocol behaviors. This simple test can 

also validate if the CPU controller can guarantee quick response time (Section 5.2), and if the 

traffic interception and requests handling is quick enough with negligible overhead (Section 

5.3). 

We use a client/server program tcpSender/tcpRecver which sends and receives packets 

using TCP/IP between two nodes.  In each iteration, the sender sends a message to the receiver 

then wait for a one-byte reply from the receiver. The tcpSender can report the latency for each 

message and the achieved network throughput, under different message sizes. We want to 

compare results from simulated networks to those from real networks. If no real data available, 

we use the theoretical values as metrics. 

When message size is small, the latency for each iteration is close to the half of network 

round trip time (RTT); when message size is large enough, the throughput approximates the 

maximum bandwidth between the two nodes.  The TCP throughput is affected by network 

latency (L), TCP window size (W), network capacity (C), and packet loss[67].  If there is no 

packet loss, the maximum throughput should be close to: 

   Throughput = min(C, W/(2*L)) 

6.3.1 Validation of Local Area Network 

Our experiments first test the real network performance between two nodes on a cluster.  

The nodes are dual Xeon 2.4GHz machines connected by GigE, configured with 128KB TCP 

window. Experiments show that real network has latency 0.222ms and bandwidth 782.87Mbps.  

On the MicroGrid, we simulate the two nodes with 128K TCP window and 0.2ms wire latency.  

The simulated results of different virtual CPU speeds are shown in Figure  6.6 and Figure  6.7. 
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Figure  6.6 Network Throughput on GigE LAN 

 

Figure  6.7 Network Latency on GigE LAN 

The figures show that the virtual bandwidth (simulated) is close to the target bandwidth 

when virtual CPU speed is faster than 25% of 2.4GHz Xeon.  When virtual CPU speed is not 

fast enough to support the memory and I/O operations, the bandwidth falls off. 

The network latency is about 0.15ms longer than the configured wire latency.  This is 

presumed to be due to Agent overhead, overhead through TCP/IP stacks, and the overhead of 

the MaSSF simulator.  
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6.3.2 Validation of Metro Area Network 

The next set of tests use a network topology with a 1ms latency between the two nodes, and 

varies the TCP window size from 32KB to 128KB.  The results of different CPU speeds are 

shown in Figure  6.8 and Figure  6.9. 

 

Figure  6.8 Network Throughput on MAN 

 

Figure  6.9 Network Latency on MAN 
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In this case, the network capacity is not the bottleneck any more, so the TCP throughput is 

mainly decided by latency and TCP window size.  We calculate the throughput upper bound in 

theory, as shown in Table 6.1. 

From Figure  6.8 and Table 6.1 we see that our simulator achieves 82-90% of the theoretical 

maximum bandwidth.  Considering the overheads on TCP stacks and application’s memory 

operations, these are excellent results. 

As for latency, the simulated value, as shown in Figure  6.9, is about 0.25ms higher than the 

configured wire latency.  Still, this is due to overheads on TCP stacks, application memory 

operations, and MaSSF overhead. 

 Table 6.1  Theoretical Maximum Throughput on a Network Channel 

 32KB 48KB 64KB 128KB 

1 ms 128Mbps 192Mbps 256Mbps 512Mbps 

5ms 25.6Mbps 38.4Mbps 51.2Mbps 102.4Mbps 

10ms 12.8Mbps 19.2Mbps 25.6Mbps 51.2Mbps 

6.3.3 Validation of Wide Area Network 

The following figures in Figure  6.10 show the bandwidth on network channel with latency 5 

ms and 10ms respectively.  The results are consistent with the theoretical bounds in Table 6.1. 
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Figure  6.10 Network Throughputs on WAN  

Based on these experimental results, we conclude that the MaSSF network simulator can 

model TCP communications accurately.   With no network congestion, the modeled maximum 

bandwidth approximates real results in local, metro, and wide area networks.  The network 

latency is also modeled accurately, excluding overhead which takes about 0.15-0.25ms per 

message. 
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We did not evaluate the simulator with network congestion, although our simulator supports 

the capability to model competitive traffic (background traffic).  Performance with congestion is 

not easy to evaluate since it depends on the competitive traffic model.  Here we also provide no 

validation on routing protocols such as OSPF and BGP4, instead, there are validation test suites 

coming with the software package. 

6.4 Validation of the MicroGrid on Applications 

We have provided validation on each individual simulation module. But this is not enough, 

since what we really care is if these simulation modules together can provide accurate modeling 

of a virtual grid environment. More specifically, does the scaled real-time mechanism 

effectively coordinate multiple resources simulation modules and create correct simulation 

results? Can the CPU controller handle mix computation and communication well for real 

applications? To answer these questions, the best approach is to validate the MicroGrid on real 

applications which can exercise most components together with large traffic and computation 

loads.  

6.4.1 Applications 

In this section, we run five classic applications on both real environment and virtual 

environment simulated using the MicroGrid.  Before the results, we first introduce the five 

applications briefly.  These applications are used in the GrADS project[9]. 

All five applications are SPMD MPI applications and have been previously tested on the 

GrADS testbed in various real-world experiments. These applications were integrated into the 

GrADS framework and tested in various experiments as part of the following efforts: 

ScaLAPACK [68], Jacobi [69], Game of Life [69], Fish [70], and FASTA [71]. 

ScaLAPACK is a popular software package for parallel linear algebra, including the 

solution of linear systems based on LU and QR factorizations. We use the ScaLAPACK right-
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looking LU factorization code based on 1-D block cyclic data distribution. The application is 

implemented in Fortran with a C wrapper. The data-dependent and iteration-dependent 

computation and communication requirements of ScaLAPACK provide an important test for the 

MicroGrid simulation. In our experiments we used a matrix size of 6000x6000. 

FASTA The search for similarity between protein or nucleic acid sequences is an important 

and common operation in bio-informatics. Sequence databases have grown immensely and 

continue to grow at a very fast rate; due to the magnitude of the problems, sequence comparison 

approaches must be optimized. FASTA is a sequence alignment technique that uses heuristics to 

provide faster search times than more exact approaches, which are based on dynamic 

programming techniques. Given the size of the databases, it is often undesirable to transport and 

replicate all databases at all compute sites in a distributed grid. We use an implementation of 

FASTA that uses remote, distributed databases that are partially replicated on some of the grid 

nodes. FASTA is structured as a master-worker and is implemented in C. For MicroGrid 

validation purposes, an important aspect of FASTA is that each processor is assigned a different 

database (or portion of a database) so the MicroGrid must properly handle input files and 

provide proper ordering of data assignments onto processors. In our experiments the sizes of the 

databases are 8.5MB, 1.7MB and 0.8MB respectively. The query sequence is 44KB. 

The Jacobi method is a simple linear system solver. A portion of the unknown vector x is 

assigned to each processor.  During each iteration, every processor computes new results for its 

portion of x and then broadcasts its updated portion of x to every other processor. Jacobi is a 

memory-intensive application with a communication phase involving lots of small messages. In 

our experiments we used a matrix size of 9600x9600. 

The Fish application models the behavior and interactions of fish and is indicative of many 

particle physics applications. The application calculates Van der Waals forces between particles 

in a two-dimensional field. Each computing process is responsible for a number of particles that 
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move about the field. The amount of computation depends on the location and proximity of 

particles, so Fish exhibits a dynamic amount of work per processor. In our experiments we used 

6,000 particles. 

Conway’s Game of Life is a well-known binary cellular automaton. A two-dimensional 

mesh of pixels is used to represent an environment of cells. In each iteration every cell is 

updated with a 9-point stencil and then processors send data from their edges (ghost cells) to 

their neighbors in the mesh. Game of Life has significant memory requirements compared to its 

computation and communication needs. In our experiments we used a matrix size of 9600x9600. 

6.4.2 Experiment Environment 

We use a subset of the multi-site testbed for the GrADS project as our testbed.  The 11 

machines used are as following: 

UCSD cluster: four 2100+ XP Athlon AMD (1.73 GHz) with 512 MB RAM each. These 

systems run Debian Linux 3.0 and are connected by Fast Ethernet. 

UIUC cluster: three 450 MHz PII machines with 256MB memory connected via TCP/IP 

over 1Gbps Myrinet LAN. These systems run RedHat Linux 7.2. 

UTK cluster: four PIII 550 MHz machines with 512MB memory, running RedHat Linux 

7.2, and connected with Fast Ethernet. 

The three sites are connected by the Internet2 network with 2.4Gbps backbone links. During 

our experiments, we observed NWS latency and bandwidth values over a period of 12 hours and 

obtained ranges as shown in Table 6.2. 

In our simulation, we configure all the machines to have 64KB TCP window.  The wide 

area latency is as shown in Table 6.2; the LAN latency is 0.2 ms.  We have to remind the 

audience that, the simulated LAN latency might higher than real latency due to simulation 
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overhead as shown in Section 6.3; while the simulated WAN bandwidth will higher than real 

bandwidth due to lack of contention. 

Table 6.2 Network performance of the testbed, reported by NWS   

 UCSD machine UIUC machine UTK machine 

UCSD machine 60-80Mbps, 

0.2 ms 

3-7Mbps 

31 ms 

4-6Mbps 

30 ms 

UIUC machine 3-7Mbps 

31 ms 

115-220Mbps 

0.2 ms 

7-17Mbps 

11 ms 

UTK machine 7-8Mbps 

30 ms 

12-18Mbps 

11 ms 

82-87Mbps 

0.2ms 

6.4.3 Simulation Results 

Two groups of experiments are conducted on those sites: “Cluster” group uses four UTK 

machines to do clustering computation; “Grid” group uses three machines from each of the 

three sites.  Both groups use a separate UCSD machine to run Globus gatekeeper.  The results 

are shown in Figure  6.11. 
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Figure  6.11 Running Time of Applications 

For the cluster, all applications run slower on the MicroGrid than on real testbed; most of 

them have error in 6%-27%, except 66% for ScaLAPACK.  The extra overhead comes from 

two major sources: 1) The MaSSF has some overhead which increases network latency.  2) 

WrapSocket wraps many system functions for simulation, which will cause some overhead. 

For the grid environment, the simulated time has about 5% - 35% errors.  We can see 

several interesting differences from the cluster results.  ScaLAPACK still runs slower on the 

MicroGrid than on real testbed, but much closer than on cluster, because ScaLAPACK uses a 

lot of small communications and the simulation overhead will have more impact on simulated 

LAN latency than on simulated WAN latency (as shown in Section 6.3). Fish and GameOfLife 

run faster on the MicroGrid than on real grid.  A possible reason is that they both use many 

large communications, and the simulated network bandwidth is higher than real system due to 

lack of contention. 

6.5 Summary 

In this chapter we provide the validation on the MicroGrid system and therefore on our 

approaches for virtual grid modeling. Specifically, we provide: 
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1）Validation of computation resource simulation.  Experiments with the MicroGrid on 

simulating multiple virtual resources per physical resource match closely within 2%-9%, even 

for applications with mix of computation and communication.  

2）Validation of the online network simulation. Latency results reported by the TCP 

client/server benchmark vary only 0.15-0.22ms for different networks, and the throughput 

results vary from 5% to 18%. 

3）Validation of the whole MicroGrid system on a range of grid application programs on 

two grid resource configurations. Most application execution times match within 65% to 95%. 

With a solid validation of the MicroGrid toolkit, a range of interesting experiments for grid 

applications and middleware is virtually unbounded. 
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Chapter 7 Scalability Studies 

In this chapter two large network simulations, one single AS network of 20,000 routers and 

one multi-AS network of 100 ASes with 200 routers each, are used to demonstrate the 

scalability of the MicroGrid system. This scale of network is quite large, even comparing to the 

largest real grid project testbeds. For example, the Grid2003 [3] has 27 sites across US and 

Korea which collectively provides more than 2000 CPUs. At the same time, hierarchical traffic-

based partitioning and mapping approaches in Section 5.4 are used in these experiments to show 

the scalability improvement. Practically, now it is possible to do realistic full grid simulation 

with the MicroGrid in a cluster. 

7.1 Experimental Setup 

7.1.1 Improve Scalability through Load Balance 

The MicroGrid must be scalable to support the study of large networks, resources, 

middleware, and applications. While most resources can be naturally simulated in parallel with 

enough physical resources, all the coordination, synchronization and dynamic interaction 

amongst resources must go through network communication. This means the network must be 

simulated as a single system with global coordination, and thus the scalability of network 

simulation is a critical challenge for the entire MicroGrid system. In particular, the challenge is 

scalable detailed packet-level simulation combined with online simulation.  We require packet-

level simulation to ensure fidelity in simulation of network, protocol, and application behavior.  

Higher level simulation approaches, such as flow level simulation and approximation through 
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network aggregation provide insufficient fidelity for our problems if interest in dynamic 

distributed systems. 

As mentioned in Section 5.4, our network simulator MaSSF uses distributed discrete-event 

simulation engine to achieve scalable performance. But only this is not enough to provide a 

scalable simulation. Like all other distributed or parallel applications, MaSSF must have good 

load balance for good speedup, and such load balance is challenging for network simulation.  

We have presented three traffic-based mapping approaches and hierarchical load balance 

enhancement for large scale network in Section 5.4. In this chapter, we want to study the 

performance of hierarchical load balance technique on traffic-based mapping approaches.  

Two traffic-based mapping approaches are chosen as the baseline, topology-based mapping 

(TOP) and profile-based mapping (PROF). And then the hierarchical load balance technique are 

applied on them and got topology-based mapping (HTOP) and hierarchical profile-based 

mapping (HPROF), respectively. Here the PLACE mapping approach is skipped since it is 

expected to get the performance in the middle of HTOP and HPROF, based on the fact that the 

traffic information accuracy in PLACE is in the middle of TOP and PROF. 

In our experiments, the TOP and PROF partitioners achieve such small MLL that their 

performance is extremely poor and the simulations cannot be completed in a reasonable time 

limit. So we adjusted the link latency to edge weight converting algorithm for the large scale 

network simulation, so partitions are less likely to across edges with small link latency. This 

tuning is not a general solution and has to be done according different topologies manually. 

Their results are labeled as TOP2 and PROF2. 

7.1.2 Evaluation Methodology 

The ultimate goal for scalability is to enable simulation of larger networks with limited 

physical resources and to enable faster simulation of a specific network with given traffic load. 
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So our basic evaluation methodology is to simulate a large network with representative traffic 

load as fast as possible. The network must be large enough to represent a realistic grid 

environment, and the traffic load should also be intensive enough with dynamic characteristics 

similar to what are shown on the real Internet. 

In this study, we chose two large networks topologies, one single AS network of 20,000 

routers and one multi-AS network of 100 ASes with 200 routers each. We will give more details 

about these networks and justify our choices in the following sections.  

Two kinds of traffic loads are used in our experiments; the background traffic and the traffic 

from real applications. The background traffic are used to provide the realistic Internet network 

conditions and dynamics, and the real applications are used to represent the simulation targets 

that we want to simulate it as fast as possible. 

For background traffic, there are 8,000 clients continuously sending HTTP file requests to 

2,000 servers. The average time gap between two successive requests of a client is 5 seconds 

and average file size is 50KB. Foreground traffic is created live from Grid applications, 

including ScaLapack[68] and GridNPB3.0[72]. ScaLapack is introduced in Section 6.4.1. 

GridNPB3.0 is a set of grid benchmarks in a workflow style composition in data flow graphs 

encapsulating an instance of a slightly modified NPB task in each graph node, which 

communicates with other nodes by sending/receiving initialization data. GridNPB includes a 

range of computation types and problem sizes, and in our experiments we use the combination 

of Helical Chain (HC), Visualization Pipeline (VP), Mixed Bag (MB) applications, all run at 

class S size.  These programs run for about 30 minutes on our platform. 

The experiments use the TeraGrid Itanium-2 cluster for simulation engine nodes.  The 

cluster nodes are dual 1.3GHz Itanium-2 processors with 2Gigabytes of memory, linked with 

Myrinet 2000 using MPICH-GM. We use 90 nodes as the simulation engines, and 7 nodes for 

application execution. 



108 

 

7.1.3 Evaluation Metrics 

The first metric is the application simulation time T, which is the time taken to simulate an 

application in a specific network simulation. As faster simulation is the ultimate goal of our 

scalability studies, it is the most important metric.  

To get deeper insight into the efficacy of our partition and load balance techniques, we also 

use three other metrics: achieved MLL, load imbalance, and parallel efficiency. 

The second metric achieved MLL shows the effect of the hierarchical load balance 

approaches in increasing parallelism and is reported directly by the partitioner.  

For the third metric load imbalance, we define the load of a simulation engine node as the 

event rate of the simulation kernel (essentially one per network packet).  Using these counters, 

we calculate the overall load imbalance across all the physical nodes in the actual simulation. 

Assuming the simulation kernel event rates are k1, k2, …, kn, for n  nodes used by the simulation 

engine, the load imbalance is normalized by the standard deviation of {k}. 

The last metric is the parallel efficiency, PE(N, L) for a problem of size L on N nodes is 

defined in the usual way[73] by 
),(*

)(),(
NLTN

LTseqLNPE = , 

where T(L, N) is the runtime of the parallel algorithm, and Tseq(L) is the runtime of the 

best sequential algorithm. Tseq(L) cannot be measured directly since the network is too large to 

be simulated on a single machine, thus, we approximate the Tseq(L) by 

chNodentRateOnEaMaximalEve
NumberTotalEventLTseq =)( . 



109 

 

7.2 Flat Network Simulation  

7.2.1 Single-AS Network Topology 

We generate network topologies for our experiments with an adapted BRITE tool [74], a 

degree-based Internet topology generator following the Power-Law[75]. The flat network 

topology includes 20,000 routers and 10,000 hosts, which are spread over a geographic area of 

5000miles by 5000miles (roughly the size of North American continent, with maximal network 

latency about 50ms). The routing is decided by the OSPF shortest-path routing protocol. 

We chose this network single-AS topology for mainly two reasons. First, with the simple 

shortest-path routing, simulation of this network demonstrates the capability baseline of our 

network simulator, including the scale of network entities it can simulate and the number of 

traffic it can handle. Second, this network has a router count comparable to the size of a large 

Tier-1 ISP, such as the AT&T network [76]. So the simulation result is valid for many 

applications that exist in a single ISP network.  

7.2.2 Flat Network Simulation Results 

In this study, application workloads are executed on the single-AS network with moderate 

background traffic, and we study the performance of four mapping approaches:  TOP2, PROF2, 

HTOP, and HPROF.  As we discussed above, both TOP2 and PROF2 mappings are tuned for 

the large scale network simulation.  

Simulation results are reported following four metrics introduced in Section 7.1.3. 

7.2.2.1. Application Simulation Time 

The application simulation time of both applications is shown in Figure  7.1. For ScaLapack, 

the use of PROF2 mapping reduces overall simulation time of TOP mapping by 14%, and the 

use of the hierarchical mapping (HPROF) further reduces the simulation time up to 40%.   
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Figure  7.1 Simulation Time on the Single-AS Network 

7.2.2.2. Achieved MLL 

The achieved MLL is shown in Figure  7.2, and we can see both TOP2 and PROF2 still have 

much smaller MLL (about 0.6ms) comparing to HTOP and HPROF.  It is clear that the 

hierarchical approaches can significantly increase the MLL, producing enough parallelism for 

large-scale simulation. These MLL values show that there is enough parallelism achievable for 

networks of ~20,000 routers in 5000miles by 5000miles area using 90 simulation nodes.  These 

simulations will provide good efficiency with slowdown of 8 times.   
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Figure  7.2 Achieved MLL on the Single-AS Network 
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Despite the fact that it produces the largest MLL (3ms), HTOP does not work very well 

compared to HPROF. The inaccurate load prediction in HTOP produces a much larger load 

imbalance which hurts performance. 

7.2.2.3. Load Imbalance 

The measured load imbalance for both applications is shown in Figure  7.3. The figure 

reports the normalized load imbalance across the physical simulation engine nodes for each 

combination of mapping approach and network topology.  Each mapping approach produces 

significantly different results. Compared to TOP2, PROF2 improves load imbalance by about 

7%. The HPROF mapping also improves the load imbalance by 11% over HTOP. It is clear that 

the use of detailed traffic information from a previous simulation execution provides a critical 

advantage in achieving effective network partitions. 

It is also shown that the HPROF mapping produces better load balance than TOP2 and 

PROF2.  This improvement is surprising because the hierarchical approaches use a simpler 

graph with coarse-grained node weights. So they should have less chance to achieve better load 

balance.  We believe the explanation is that the underlying graph partitioner METIS does a 

better job for smaller graphs, since reduced graphs have many fewer vertexes. 
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Figure  7.3 Load Imbalance on the Single-AS Network 
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7.2.2.4. Parallel Efficiency 

The parallel efficiency of both applications is shown in Figure  7.4. While the overall 

efficiency of network simulation at this scale does not reach 100%, these values are excellent 

for parallel discrete event simulations on irregular loads.  The HPROF for ScaLapack achieves 

about 40% parallel efficiency, a dramatic 64% improvement over TOP2.  These levels of 

parallel efficiency enable effective large-scale network simulations. 
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Figure  7.4 Parallel Efficiency on Single-AS Network 

7.3 Multi-AS Network Simulation  

The Internet is not a flat network with shortest-path routing. Instead, it is organized as a 

collection of ASes with traffic shaped by BGP policy routing. In such networks, connectivity 

does not mean reachability and the real dynamics are quite different from a single-AS network. 

Such networks present greater challenges to achieving load balance because the traffic load is 

less coupled to network topologies.  Despite its importance, to our knowledge multi-AS 

networks have never been simulated in large-scale because of the complexity involved. 

Although there is much research on Internet-like topology generation [74, 77, 78], these 

studies focus on physical connectivity and pay little attention to routing configuration 

(particularly BGP). There are two major reasons for this situation. First of all, prior to our 
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MaSSF simulator, no existing network simulator supported large scale simulation with detailed 

BGP routing. Simulators either have no support for BGP routing (DaSSFNet[79], 

ModelNet[35]), or they are limited by scalability to such a degree that BGP policy routing is 

less relevant (NS2[30], SSFNet[22]). Second, real Internet BGP routing configurations are not 

publicly available, since routing policy are closely tied to commercial contract terms that are 

considered highly confidential by ISPs.  Fortunately, recent research has explored inferring AS 

relationships and BGP routing policy from publicly available information, such as BGP routing 

tables. Several of these efforts have made significant progress [80], making it possible for us to 

automatically generate realistic BGP routing policies into our network generator. 

7.3.1 Multi-AS Network Topology  

The network topology is created by our maBrite topology generator with BGP routing 

configuration as described above. It includes 100 ASes, each containing 200 routers. In addition, 

10,000 hosts are randomly attached to Stub ASes for background traffic generation and live 

traffic agent. All these routers and hosts are spread to a geographic area of 5000miles x 

5000miles.  

The routing inside each AS is decided by the OSPF routing protocol and inter-AS routing is 

decided by BGP4 routing protocols. The BGP routing policy configuration is set up by our 

automatic BGP routing configuration procedure, listed in the Appendix A.  

7.3.2 Multi-AS Network Simulation Results 

Application workloads are executed on the multi-AS network with moderate background 

traffic, and we evaluate the performance of four mapping approaches: TOP2, PROF2, HTOP, 

and HPROF.  Again, both TOP2 and PROF2 mappings are tuned for the large scale network 

simulation. 

Simulation results are reported following four metrics introduced in Section 7.1.3. 
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7.3.2.1. Application Simulation Time 

The simulation time of both applications is shown in Figure  7.5. For ScaLapack, the use of 

PROF2 mapping reduces overall simulation time of TOP2 mapping by 21%, and the use of the 

hierarchical mapping (HPROF) further reduces the simulation time up to 41%. The GridNPB 

has less improvement, since it has less communication compared to ScaLapack. 
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Figure  7.5 Simulation Time on the Multi-AS Network 

7.3.2.2. Achieved Minimal Link Latency 

The achieved MLL is shown in Figure  7.6. Like on the Single-AS network, the original 

TOP and PROF produce small MLL’s and our data reflects the resulting poor simulation 

efficiency. The hierarchical approaches achieve much larger MLL’s, in some cases ten times 

larger.  MLL’s of this size support good simulation efficiency.  
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Figure  7.6 Achieved MLL on the Multi-AS Network 

7.3.2.3. Load Imbalance 

The measured load imbalance for ScaLapack and GridNPB is shown in Figure  7.7. The 

figure reports the normalized load imbalance across the physical simulation engine nodes for 

each combination of mapping approach and network topology.  Each mapping approach 

produces significantly different results. Compared to the TOP2 mapping, the PROF2 mapping 

improves the load imbalance by about 15%. The HPROF mapping improves the load imbalance 

over HTOP by 31%.   

As we anticipated, the load imbalance for this multi-AS network is much larger than the 

single-AS network due to the use of BGP routing, and it makes the improvement from profile-

based techniques significant compared to that of the single-AS network in Section 7.2.  



116 

 

Load Imbalance on Multi-AS

0
0.2

0.4
0.6

0.8
1

ScaLapack GridNPB
Lo

ad
 Im

ba
la

nc
e

HPROF PROF2 HTOP TOP2
 

Figure  7.7 Load Imbalance on the Multi-AS Network 

7.3.2.4. Parallel Efficiency 

The parallel efficiency of the simulation of both applications is shown in Figure  7.8. While 

the overall efficiency of network simulation does not approach 100%, HPROF for ScaLapack 

can achieve about 40% parallel efficiency, about a 64% improvement from TOP2.  This level of 

parallel efficiency enables simulation of large-scale Multi-AS networks. 

Parallel Efficiency on Multi-AS

0
0.1
0.2

0.3
0.4
0.5

ScaLapack GridNPB

P
ar

al
le

l E
ffi

ci
en

cy

HPROF PROF2 HTOP TOP2
 

Figure  7.8 Parallel Efficiency on Multi-AS 

In summary, these experiments show that our hierarchical load balance approaches still 

work well for large multi-AS networks with realistic BGP routing configuration.  
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7.4 Summary 

Large-scale and realism are two critical requirements for network simulation for Grid 

application studies. In this paper, we first study a large flat network with 20,000 routers.  Then, 

at this scale, we study realistic network structures (100 AS’s, BGP4 and OSPF routing) versus 

flat OSPF routing.  Multiple load balance approaches are evaluated against these networks. The 

best of them, hierarchical profile-based load balance (HPROF), can improve the load imbalance 

by 40% and reduces the simulation time by about 50%. Combining with our packet-level hop-

by-hop network simulator and detailed BGP4 protocol support, we demonstrate that we can 

provide realistic large-scale network simulation for networks including about 20,000 routers. 

Based on the generality of these topologies and traffic loads, we can expect similar 

scalability results for simulation with comparable network size. We believe that it is fair to say 

the MicroGrid, therefore our integrated online simulation approach, has achieved the scalability 

enough for accurately modeling a virtual grid environment. Its capability is larger than the 

simulation requirements of most existing grids and it is large enough to model future grids. 
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Chapter 8 Case Studies 

Two case studies are used to demonstrate the capability of the MicroGrid for network and 

grid related research. The first is a study of BGP simulation configuration, the second is the 

study of tolerating Denial-of-Service attacks with a proxy network.  As we will show in the 

experiments details, neither of them is possible without the MicroGrid toolkit, due to the large 

network size, detailed simulation, and/or online simulation. 

8.1 A Study of BGP Simulation Configuration 

Border Gateway Protocol (BGP) is used to exchange routing information between different 

computer networks. It is commonly agreed that we lack clear understanding of this key element 

of Internet infrastructure. To address this problem, simulation is one of the tools used most by 

researchers. However, current BGP simulation tools are limited on scalability and BGP routing 

policy support, and thus, it is hard to evaluate the realistic of current BGP simulation practice. 

The unique capability of the MicroGrid toolkit provides new opportunity on this. Given the 

capability to simulate large topology, given the full support for BGP routing policy and inferred 

AS relationship form real BGP routing table, and given the capability to compare the simulation 

results and real data, how close will the simulation data be compared to the real data? In this 

study, a real Internet AS-level topology is constructed with the most realistic routing 

configuration ever achieved; then the MicroGrid is used to simulate this network topology, and 

simulation data are compared directly to real data to check how closely the simulation matches 

the reality. 
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Results show 1/4 match. Actually, it is not so bad, as we will show through analysis 

presented later. It means the simulator does catch something real.  We could trust BGP 

simulation for some studies, such as convergence time, dampening effects, etc. Of course, ideal 

simulation generates 100% match, but this is hard to achieve. So the next question is how to 

improve simulation to reality as much as possible.  

8.1.1 Problem Definition and Approach 

The Internet is composed of a large number of different networks, each of which is 

administrated by a different organization – Theses are called Autonomous Systems (AS). To 

route data packets from one network to the other, the Internet uses an Inter-domain routing 

infrastructure. Border Gateway Protocol (BGP) [62] is the current de-facto inter-domain routing 

protocol, which is widely deployed with the global Internet since 1996. As a protocol, ideally, 

we should have a clear understanding about BGP, such as its performance, behavior, 

vulnerabilities, reaction to stressful events, scalability issue, and so on. However, due to its 

large-scale and distributed nature, it is commonly agreed that such understanding remains a 

major research challenge. 

Simulation technique is one tool widely used by BGP research community to help 

improving our understanding [81, 82] of the complexity of this large-scale routing system. It is 

important to revisit the issue of how BGP simulations are configured since different 

configurations yield different simulation results. Since BGP is more regarded as a policy-based 

routing protocol, policy configuration in simulation plays a critical role on the simulation results. 

In reality, the BGP configuration and routing policy vary on network topologies and business 

decisions.  So one key problem of the BGP simulation is not clear; that is, how closely does the 

current BGP simulation practice, especially the policy configuration, match to the reality?  
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One straightforward way to evaluate the reality of BGP simulation is to run simulations 

with the real Internet topology, then compare the simulation results with real routing data. 

However, the use of this approach faces two major challenges.  

First, such approach requires a network simulator to support large-scale simulation with 

detailed BGP routing. Current simulators either have no support for BGP routing 

(DaSSFNet[79], ModelNet[35]), or are limited by scalability to such a degree that BGP policy 

routing is less relevant (NS-2[30], SSFNet[22]). The scalability coming with the MaSSF 

provides the opportunity to solve this problem. It can simulate a large network with about 

~20,000 ASes on a 100-node cluster, which is large enough for real Internet study. 

Second, real Internet BGP routing configurations are not publicly available, since the 

routing policy is closely tied to commercial contract terms that are considered highly 

confidential by ISPs.  Fortunately, recent research has explored inferring AS relationships and 

BGP routing policy from publicly available information, such as BGP routing tables. In [83], 

researchers examined the routing policies in the Internet and classified them into several 

categories. Such result is well accepted and used in simulations. The maBrite topology 

generator coming with MaSSF can import real network topology and convert AS relationship to 

BGP routing configuration. 

In our experiment, the MicroGrid toolkit is used to simulate real Internet AS-level topology. 

First, a real Internet AS-level topology is obtained from BGP routing tables, which are publicly 

available at various observation points [84, 85]. After that, BGP routers are configured with 

routing policies based on AS relationships inferred from [83] and some extra information 

available from the routing table data (see more details in Section 8.1.2). Without shrinking the 

Internet topology, it is now possible for us to compare the simulation results with real routing 

data for the purpose of checking if such configuration matches the reality. With the real Internet 

topology and the routing policy inferred from exiting BGP routing table, we claim that our BGP 
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simulation is the most realistic that has ever been done. And our results represent the state-of-

the-arts of current BGP simulation practice. 

8.1.2 Construct the Realistic Internet BGP Simulation 

Configuration 

8.1.2.1. Convert AS Relationship to BGP Routing Policy 

BGP4 is the most widely used inter-AS routing protocol used to exchange reachability 

information between ASes, in the form of route announcements. Each route announcement 

contains attributes, such AS path, multi-exit-discriminator (MED), and next hop. The most 

important attribute, AS path, is a list of AS numbers associated to a network. Other attributes 

are used to define routing policies. One of the key features of the BGP protocol is its capability 

to support policy routing, which allows each AS to choose its own policy in accepting routes, 

selecting the best route, and announcing routes to its neighbors. Two kinds of routing policies 

are: Import Policy and Export Policy.  

1) Import Routing Policy: When receiving a route announcement from its neighbor, a 

router applies its import policies to the route, which include denying, or permitting a route, and 

assigning a local preference to indicate how favorable the route is.  Local preference is used to 

differentiate routes received from different neighbors, since a BGP router may receive routes to 

the same destination from different neighbors and it must choose the best route to be used in its 

local routing table. BGP incorporates a sequential decision process to pickup the best route from 

a set of candidates to a given prefix.  For example, the highest local preference, the shortest AS 

path, the lowest origin type, and the smallest MED for routes with the same next hop AS. There 

is a long list of criteria to set the preferential order of routes, and the first and the most 

important rule is the local preference. In practice, network administrators usually use local 
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preference to enforce their import routing policies. According to [80], there are two general 

rules: 

Route Preference between Provider, Customers, and Peers: Network operators usually 

assign different local preferences to routes learned from providers, customers, and peers. 

Customer routes have the highest local preference, and peer routes have higher local preference 

than providers. 

Consistency of Local Preference with Next Hop ASes: Operators may set local 

preference configuration based on prefix level or next hop AS level. Since it is easier to 

maintain provider, customer, and peer preferences based on next hop AS level, most ISPs use 

this approach in practice. 

2) Export Routing Policy: BGP routers use export policies to decide which routes are to be 

propagated to their neighbors. The policies are usually transformed directly from AS 

relationships. 

Exporting to a Provider: An AS can export its local routes and routes of its customers, but 

can not export routes learned from its peers or providers 

Exporting to a Peer: An AS can export its local routes and routes of its customers, but can 

not export routes learned from its peers or other providers 

Exporting to a Customer: An AS should export all routes it knows to its customers 

These basic export policy rules are the direct requirement of commercial agreements. For 

example, the first rule guarantees that a provider will not use its customer network to transit 

traffic, and the last rule guarantees that the customer can get full Internet access through its 

provider. 
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 1) Generate AS level topology based on the BGP routing table 

2) Decide AS relationships from the inferring 

3) Setup Import Routing Policy 

a. Accept all incoming routes 

b. Set Local Preference according to Next Hop AS, which prefer 

routes from Customer, over routes from Peer, and over routes 

from Provider 

4) Setup Export Routing Policy 

a. To Provider: Export local and Customer routes 

b. To Peer: Export local and Customer routes 

c. To Customer: Export all routes 

5) Pickup  default/backup routers for multi-homed Ases 
 

Figure  8.1 Procedure for Internet AS-level Topology Generation 

With these heuristic rules, we can convert the inferred AS relationship to routing policies in 

maBrite topology generator (Figure  8.1). 

8.1.2.2. Improve the Routing Configuration with Real Routing Tables 

So far, we capture the major routing policy based on AS relationship. However, AS 

relationship is not the only factor for routing decisions. There are a few others details may affect 

the final routing decisions, such as the multi-homed stubs AS [63] and selective Announcement 

[80]. With the help of real routing tables, we can polish our topology to incorporate this 

information.  

Multi-home is a popular practice to provide routing redundancy and higher network 

bandwidth. A multi-homed AS can have 2 or more providers, but it may prefer to use one 

provide for most of the traffic, and use the other provider as a backup, in case the routing to the 

first provider fails or is congested. This decision is not derivable from AS relationships; 

however, it can be estimated from the real routing table data. We can get its preference by 

checking all routing entries to that stub AS at observation points.  We compare total number of 



124 

 

routing entries to AS S that uses the provider M and that using the provider N, and then set the 

export preference of AS S. 
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Figure  8.2 Selective Announcement 

Selective Announcement is used when the AS wants to treat parts of its network differently. 

For example, as shown in Figure  8.2, the Stub AS A has two sub-networks with prefixes p1 and 

p2.  The AS A wants to use the provider AS B for incoming traffic of sub-network p1, and use 

provider C for incoming traffic of sub-network p2. In order to achieve this effect, AS A 

announces two prefixes separately; it announces only the prefix p1 to provider B, and 

announces only the prefix p2 to provider C. This routing configuration is not used in our 

Internet simulation, since currently the maBrite cannot create the AS configuration to generate 

multiple prefixes automatically.  Instead, we just pick the largest prefix and calculate its 

preference as the multi-homed case above. This is the major source of error in our network 

topology setup. 

8.1.2.3. Scalable Routing Policy Enforcement 

From the BGP routing table dumped at May 11, 2004, current Internet has about 17,000 

ASes. It is still a big challenge to simulate a network of this scale, in the term of both memory 

requirement and computation overhead of BGP protocols. The major memory requirement is 

used to store BGP routing tables on each BGP router, and the computation overhead mainly 

comes from the enforcement of routing policy.  
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Figure  8.3 An Example of AS relationships 

The routing policy is enforced through filter operation using regular expression match, 

similar to the real commercial router interface. However, this approach is not very efficient and 

hard to optimize for performance. For example, one AS has a routing policy that only exports 

routing information of its customers to its peer. Originally this is implemented by putting a list 

of all customers in the filter definition, and the filter will check the customer list one by one 

when exporting a routing entry. As shown in Figure  8.3, AS 7 has a provider AS 6 and 2 direct 

customers AS 13 and AS 34. However, it must list all of its customers, direct or indirect, in its 

export filters (Figure  8.4). The overhead is large, for a backbone ISP with thousands of 

customers, in the term of both memory consumption and computation. 

 Export Filter of AS 7:  
     clause [  precedence 1 
         predicate [ 
              atom [ attribute nhi_path matcher (.*)(8|13|34|38|52)$] 
         ] 
     action [ primary permit ]  

Figure  8.4 The Export Filter using the AS list 

In practice, the routing policy is enforced through the community attribute. A provider AS 

assigns a special community value to all of its customers, which will be associated with all 

routing entries created by the customers. Then the provider can check the community valued in 
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export filters and may assign. To mimic this approach, MaSSF implements the community 

attributed and add the automatic community check/setup in the maBrite generator. 

  Export Filter for AS 7: 
        clause [ precedence 1 

predicate [ 
   atom [ attribute community matcher 7] 
   ] 
  action [ primary permit 
   atom [ attribute community type set value 6] 
                ] 

 

Figure  8.5 Export Filter using Community Attribute 

The Figure  8.5 is the new export filter configuration of AS 7. The predicate matches all 

routing entries with community value 7, which means they are created by its customer ASes. 

All matched routing entries can be exported to AS 7’s neighbors, and the community value is 

re-set to 6, which is the provider of AS 7. Similarly, AS 6 will use this community value to 

enforce its own exporting policies.  

Summarizing our Internet BGP simulation, we first exploit the scalability of MaSSF to 

directly simulate the real Internet AS-level topology. This enables the direct comparison of 

simulation results to real Internet, which is never conducted before. Then we convert the 

inferred AS relationship to BGP routing configuration and enhance it with real BGP routing 

table.  

8.1.3 Simulation Results 

From the BGP routing table dumped at May 11, 2004, current Internet has about 17,000 

ASes and this generated network is simulated on a cluster with 60 Itinum-2 nodes.  

There are many metrics can be used to evaluate how close is the simulated network to the 

real Internet. For examples: 

1) Routing paths of single-prefix-origination AS: 
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For a given studied prefix, we compare the routing paths generated by simulation and paths 

observed at various BGP routers. Routing paths are influenced largely by routing decision 

algorithm and policy. So by comparing paths, we can do reality check on the simulation code 

and policy configuration. We will first study prefixes which are originated by single-prefix-

origination ASes. In real Internet, we can get the routing paths to these prefixes from multiple 

BGP observe pointers. These paths are directly comparable to simulation results. By calculating 

the percentage of simulated routing paths which are exactly the same, one hop difference, and 

two hops difference, we can evaluate the reality of our routing configuration and simulation. 

2) Routing paths of multiple-prefix-origination AS: 

ASes which are originating multiple prefixes are not considered in the previous case. 

Because for those prefixes, there may be different policies applied to them. Those policies are 

purely a local decision which is not available to us. Thus it is much harder to compare 

simulation results and observed behavior of those prefixes.  

3) Routing Dynamics: 

In real world, researchers have set Beacon prefixes, which are brought up and down 

periodically. For each routing change of Beacon prefixes, we can observe and collect a set of 

triggered updates. We also simulate Beacon prefixes then compare the simulated routing 

updates with observed routing updates. More precisely, we compare a) # of updates; b) path 

changes; c) convergence time; d) inter-arrival time distribution.  

We check the routing paths to all single-prefix-origination ASes at the BGP observation 

points. We use totally 44 observation points. The Cumulative Dense Function (CDF) of the 

match percentage is shown in Figure  8.6, with the average of 24%. This result is much lower 

than our expectation, and now it is meaningless to continue the second and third checks until we 

can improve this match percentage. 
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Figure  8.6 CDF of BGP Routing Table Match Percentage  

Checking the simulation result, we find two major reasons for the large gap between the 

simulation output and the real Internet routing table.  

First, the routing error in BGP is accumulative. Due to the distributed nature of the BGP 

protocol, routing decisions are made locally and then propagated to other ASes. Since every 

BGP routers only export the best routing chosen by themselves, BGP routers have no global 

view of the network. Any decision different to real Internet will be propagated and introduce a 

large number of different routes for the other routers.  

Second, the selective announcement is the major source of the error, especially in the 

medium size ISP networks. Those ISP usually have a few customers AS and multiple providers, 

they usually use selective announcement for traffic engineering. As we mentioned above, we 

only calculate the preference of the largest prefix and use it to represent the whole AS. This can 

lead to a large number of routing decision errors and then propagated to the whole Internet. To 

really improve the simulation result, we must figure out how to create multiple prefixes in a 

single AS and how to do selective announce automatically in maBrite. 
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8.1.4 Summary 

In this study, we exploit the power of scalable network simulation in MaSSF to simulate 

real AS-level Internet topology. We also construct the most realistic BGP configuration that has 

ever been achieved using inferred AS relationship. This network is simulated by the MaSSF on 

a 60-node cluster. We report our experimental results by comparing the simulation results 

directly to real routing data. Results show there is a significant gap between simulation results 

and real data, which warrants further investigation. Results show 1/4 match. As we show above, 

this is mainly due the accumulative error of BGP and selective announcement. While we cannot 

do much on the first issue, the later can be mitigate by supporting multiple prefixes in an AS 

and advanced routing configuration support in maBrite.  

8.2 Empirical Study of Tolerating DOS Attacks with a Proxy 

Network 

Denial-of-Service (DoS) attacks are a continuing key threat to Internet applications.  In such 

attacks, especially distributed DoS attacks, a set of attackers generates a huge amount of traffic, 

saturating the victim’s network and causing significant damage.  Proxy networks have been 

proposed to protect applications from Denial-of-Service (DoS) attacks.  However because large-

scale study in real networks is infeasible and most previous simulations have failed to capture 

detailed network behavior, the DoS resilience and performance implications of such use are not 

well understood in large networks.   While post-mortems of actual large-scale attacks are useful, 

only limited dynamic behavior can be understood from these single instances.  

Our work exploits the unique capability of the MicroGrid, a detailed large-scale online 

network simulator, to study proxy networks with real applications and real DoS attacks.  

MicroGrid supports detailed packet-level simulation of large networks and use of unmodified 

applications.  With MicroGrid, we are able to make detailed performance studies in large 
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networks environment with complex, typical application packages and real attack software.  Our 

studies include networks with up to 10,000 routers and 40 Autonomous Systems (ASes) with a 

physical extent comparable to the North American continent.  We believe this is the first 

empirical study of proxy networks for DoS resilience at large-scale, using real attacks, and in a 

realistic environment. 

8.2.1 Background 

8.2.1.1. Distributed Denial-of-Service Attacks 

Denial-of-Service (DoS) attacks have been a major security threat to typical Internet 

applications[86-88], in which a central server provide services to a large number of users widely 

distributed in the Internet.  In a DoS attack, attackers consume scarce resource which 

applications depend on, making the applications unavailable to their users. 

There are two classes of DoS attacks: infrastructure-level and application-level attacks.  

Infrastructure-level attacks directly attack the service infrastructure, such as the network and the 

hosts of the application services, for example, by sending floods of network traffic to saturate 

the network of the application services.  On the other hand, application-level attacks denial-of-

service applications by exploiting weakness in application-level protocols, for example, by 

overloading application services with abusive workload or by sending malicious requests 

causing application services to crash. 

Infrastructure-level attacks only require the knowledge of applications’ network address, i.e. 

IP address.  Meanwhile, application-level attacks are tightly-coupled with application-level 

protocols and do not require applications’ IP addresses.   

Distributed Denial-of-Service (DDoS) attacks are large scale DoS attacks, which typically 

involves a large number of “zombies”.  There are two stages in such attacks.  First, attackers 

build zombie networks by compromising Internet hosts and installing zombie programs.  
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Second, attackers control the zombies to DoS the victim.  Both infrastructure and application-

level DoS attacks can be used in the second stage.  Automated DDoS toolkits, such as 

Trinoo[89], TFN2k and mstream [90], and worms, such as CodeRed [91, 92], have been used 

for automation, enabling large scale attacks. 

Our study focuses on distributed infrastructure-level DoS attacks.   

8.2.1.2. Proxy Network Approach 
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Figure  8.7 DoS-Tolerant Proxy Network 

Overlay networks have been used to protect applications from DoS attacks [93-97]. Figure 

 8.7 shows a generic proxy network encompassing most of the proposed approaches.  It shows a 

conceptual view of the proxy network from two perspectives.  Proxies run on a resource pool 

with a large number of interconnected hosts, e.g. Internet hosts; proxies and applications form 

an overlay network by having logical connections tunneling application-level traffic among 

proxy nodes.  The essence of the proxy network approach is to allow communication between 

users and applications without revealing the applications’ low-level network address, e.g. IP 

address.  Applications do not publish their own IP addresses.  Instead the addresses of a number 
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of edge proxies are published, and these proxies are used to communicate (via other proxies) 

with the application.   

Since only application level traffic is delivered inside the proxy network, once an 

application’s low-level network address is hidden from attackers, direct infrastructure DoS 

attacks on the application are avoided.  Furthermore, the proxy network is widely distributed in 

the network and highly redundant, so that it is DoS-resilient and it can shield the applications 

from DoS attacks. 

8.2.2 Problem Definition and Approach 

8.2.2.1. Problem 

We have little understanding of the performance or effectiveness of proxy networks to 

provide DoS resilience in large-scale realistic networks. To date, studies of these problems have 

been limited to theoretical analysis and small-scale experiments.  They cannot capture real 

complex network structures, real temporal and feedback behavior of network and application 

protocols, and detailed network dynamics, such as router queuing and individual packet drops.  

All these have important impact on system performance. 

Thus, we still do not have answers to many key questions about the viability and properties 

of these proxy approaches. 

1) With real complex network structures and protocol behavior, can proxy networks tolerate 

DoS attacks?  In particular, in large realistic networks, under various attack scenarios, how 

much can proxy networks mitigate the impact of DoS attacks on users’ experienced 

performance?  What are the key parameters to achieve effective and efficient resilience?  How 

does this capability scale up when proxy networks grow in size? 

2) What are the basic performance implications of proxy networks?  How do they affect 

users’ experienced performance for real applications in large-scale realistic networks? 
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8.2.2.2. Challenges 

To answer these questions, network simulation is necessary, since you cannot do large-scale 

DOS experiments on real Internet and or a small testbed. However, simulation for DOS attacks 

presents large challenges on the capability of network simulator. 

First, the network simulator must be scalable to support simulation of large network with 

huge DOS traffic. To make the study results applicable to real Internet environment, the proxy 

network should be large enough. Also, this proxy network should be widely distributed in the 

network, and it presents a requirement on number of routers in the simulated network. Besides 

the large network size, we also expect the large DOS traffic from the attacking module. Since 

the basic approach for DOS attack is to saturate the network link, we expect the traffic of a few 

Gbps attacking traffic in the simulated network. 

Second, it requires low level details to understand the attacking effect on applications 

performance. For example, the slow-start effect of TCP congestion window control, the AIMD 

policy on packet drop, and even the jitter due to the router queuing delays will greatly affect the 

proxy network and application’s performance. Without this packet level detailed network 

simulation, it is impossible to study these behaviors. Because DoS attacks exercise extreme 

points of network behavior, correct modeling of such detail is important for realistic studies.  In 

this context, we study the performance and DoS resilience of the generic proxy network 

approach. 

Third, it is important to model real temporal and feedback behavior of network and 

application protocols and their interaction with other network traffic. This is difficult without 

online network simulation capability. Online network simulation can also help to capture the 

subtle details in the proxy network implementation, which is quite important to the final 

performance of the application. 
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Due to these challenges, there are no solid answers to the questions above. Existing network 

simulator are either limited in scalability or in the simulation details. 

8.2.2.3. Approach 

MicroGrid enables us to study these problems in a straightforward way, which cannot be 

easily achieved before.  MicroGrid creates an Internet-like large-scale virtual network 

environment, and allows unmodified applications running on it.  We built a proxy network 

prototype and deployed it along with a real application and real user programs into the 

MicroGrid virtual environment.  We build a large zombie network in the virtual environment 

running a real DDoS toolkit to generate attack traffic.  This allows us to do controlled 

experiments with different proxy network configurations and different attack scenarios, and 

study the questions above.   

Details of our approach include:   

1) Use of a large-scale, high-fidelity packet-level online network simulator – 

MicroGrid – to simulate large-scale realistic network environment, which include 

up to 10,000 routers and 40 ASes comparable to the size of large ISPs. 

2) A real proxy network implementation and real applications deployed together in 

the MicroGrid virtual environment. 

3) A large zombie network of 100 zombies and a real distributed DoS toolkit to 

generate attack traffic.  It supports controlled experiments with various attack 

scenarios.   

4) A tree proxy network topology, rooted at the application with edge proxies at the 

leaves providing user access. The number of edge proxies is the width of the tree, 

and the number of hops from root to leaves is the height.  For a localized 
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application implementation, the tree corresponds to subset of links that would be 

exercised in all proxy networks. 

5) Systematic study of a range of attacks, proxy network configurations, application, 

and resilience strategies. 

We systematically study users’ experienced performance using a range of proxy network 

topologies to understand the basic performance impacts of proxy networks; then we generate a 

range of attack scenarios with different attack magnitude and distribution, and systematically 

study their impact on users’ experienced performance with proxy networks of different sizes to 

understand proxy networks’ DoS-resilience capabilities and scalability. 

8.2.3 Experimental Environment 

8.2.3.1. Software Environment 

There are four software components used in the experiments: a proxy network prototype 

implementation, apache web server as the application, a web testing tool “siege” to simulate 

user access, and a DDoS attack tool “Trinoo”. 

1) Proxy Network Prototype Implementation 

The proxy network is a generic overlay network composed of proxy nodes.  It can be 

configured to support any topology and extended to support any routing algorithm.  Proxy 

nodes have unique identifiers, and act as routers.  Each pair of neighboring proxies maintains a 

TCP connection.  When a proxy starts, it connects to its neighboring proxies according to the 

specified topology information and some bootstrap location information of their neighbors.  

Messages can be routed inside the proxy network following any given routing algorithm.   
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Figure  8.8 Generic Proxy Network Prototype 

The proxy network supports all TCP applications transparently.  We use the DNS scheme 

used by content delivery networks [98] to direct user access to proxies. 

As shown in Figure  8.8, edge proxies listen to user connection requests, and encode 

application traffic into messages which are routed via the proxy network to the application.  At 

the exit of the proxy network, application proxies (proxies that directly connect to the 

application) decode the messages, establish new connections to the application if necessary, and 

send the data to the application.  The TCP connections among proxies are persistent and shared 

among users. 

2) Application Service 

We use Apache web server as a representative application front-end.  Since we focus on the 

network impact of DoS attacks, specific details of the application logic at the back-end are not 

critical.  Here we use Apache server to serve files of different sizes as a representative scenario. 

3) User Simulator 

We use siege – a web test toolkit – to generate user requests.  Siege can generate web 

requests based on a list of URLs and measure the response time for each of the requests.  This 

allows us to simulate user access and collect statistics which characterize user experienced 

performance. 

4) DDoS Attack Toolkit 
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The attack tool used in experiments is the simTrinoo, which is a simulation module in 

MaSSF to mimic the behavior of the Trinoo attack tool. Based on two concerns, we do not use 

the real Trinoo program directly. First, due to the huge traffic created by attackers, the overhead 

of using Trinoo is quite large, especially in the Agent module of the simulator, which accepts 

and dispatches requests inside the simulator. It will affect the scalability of the whole system. 

Second, the logic of the Trinoo is so simple that we can easily reproduce the same traffic pattern 

inside the simulator using a traffic generator. Comparing to the simTrinoo, it will not bring any 

benefits to the accuracy of our simulation results. 

Just like the Trinoo program, each simTrinoo attacker maintains a list of victims. 

Periodically, it randomly picks up one victim and sends out UDP attacking packets to it. By 

controlling the sleep between every two attacks and setting the victim list on every attacker, we 

can control the attacking traffic enforced on each proxy node. 

8.2.3.2. Simulation Setup 

The proxy network, apache server, siege programs and simTrinoo attackers are deployed in 

the MicroGrid simulated network environment.  The maBrite topology generator is used to 

generate Internet-like Power-Law network topologies.  We use two virtual networks in our 

experiments.  One includes 1000 routers and 20 ASes, and the other includes 10,000 routers and 

40 ASes, which is comparable to the size of a large ISP network.  Both networks span a 

geographic area of 5000 miles by 5000 miles, which is roughly the size of the North American 

continent.  This physical extent determines link latencies.  OSPF routing is used inside ASes, 

and BGP4 is used for inter-AS routing.  

Our network simulator is running on an 8-node dual 2.4GHz Xeon Linux cluster with 1G 

main memory each, connected by a 1Gbps Ethernet switch. The proxy and siege processes are 
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running on another 24-node dual 450MHz PII Linux cluster with 1G main memory each, 

connected by a 100Mbps Ethernet switch. These 2 clusters are connected with a 1Gbps link. 

8.2.4 Experiments and Results 

To answer the questions stated in Section 8.2.2, we conducted three sets of experiments: 

proxy network performance evaluation, proxy network resilience against DDoS attacks using 

simple redundancy schemes and proxy network resilience using fail over schemes.  

8.2.4.1. Proxy Network Performance 

To understand the performance implication of the proxy network approach, we compare the 

user-observed service performance between the case where users directly access the application 

and the case where a proxy network is used.  We use a sample of 100 users randomly chosen 

from the simulated network described in Section  8.2.3.  Users choose edge proxies based on 

proximity.  

We use a simple heuristic to deploy a proxy network.  Edge proxies are uniformly 

distributed in the simulated network.  Application proxies are placed on hosts physically close 

to where the application service is.  All the other proxies are evenly distributed between edge 

proxies and application proxies.  This heuristic tries to align a proxy network to the underlying 

network to avoid long detours in overlay routes.  It is straightforward to implement this heuristic 

for proxy networks whose topology is a tree, which is the case used in our experiments.   

Figure  8.10 shows the results for a tree-topology proxy network with about 200 proxies, 64 

of which are edge proxies.  The X-axis is the response time for a user to download a given size 

file (1.5KB or 100KB) either directly from the application service or via the proxy network.  

The Y-axis is the Cumulative Density Function (CDF) of user-observed response time over the 

user population. 
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Figure  8.9 Direct Access vs. Proxy Network 

Surprisingly the proxy network greatly improves performance.  For small requests (e.g. 

1.5K), the 50-percentile response time is reduced by half, and for medium size requests (e.g. 

100K), the improvement is even more significant.  However, the performance gap between the 

two cases becomes smaller for large files (e.g. >1MB).  There are two main reasons for this: 

First, proxy network improves connection set up time. As shown in Figure  8.9, there are 

established TCP connections among proxies.  For each virtual connection between a user and 

the application, instead of establishing a long TCP connection between the user and the 

application, two shorter TCP connections are established: a connection from the user to the edge 

proxy it uses and a connection from the corresponding application proxy to the application.  

Both of these are short connections, because application proxies are close to the application 

service, and users choose edge proxies based on proximity.  Second, the TCP connections 

among proxies are persistent, and in most cases the TCP congestion windows for those 

connections have already been fully opened.  It no longer needs TCP slow start phase to grow 

the congestion window over multiple round trips to complete a data transfer.  For medium size 

requests (e.g. 100KB shown in Figure  8.10), this effect is most prominent.  
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Figure  8.10 Proxy Network Performance Implication 

For these reasons, having a proxy network can potentially improve the user-observed 

application performance, and the following principles should be considered in the deployment 

of proxy networks.  Each overlay hop (i.e. RTT between neighboring proxies) should be kept as 

short as possible.  Edge proxies should be widely distributed to be close to users, and 

application proxies should be put close to the application.   

In this experiment, the online simulation capability of the MicroGrid enable use to study the 

application performance directly in large networks. The packet level detailed simulation in the 

MicroGrid is also critical to capture the application performance, which depends the accurate 

modeling of TCP hand-shaking and slow-start.  
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8.2.4.2. DoS-Resilience of Proxy Networks 

To explore the DoS-resilience capability of proxy networks, we study user-experienced 

performance under a range of attack scenarios with or without proxy networks.  We use the 

same proxy network, which contains 192 proxies (64 edge proxies), in the simulated network 

with 20 ASes and 1000 routers.  In addition, we constructed a DDoS network, which contains 

100 Trinoo daemons randomly distributed in the network. 

 Our first experiment explores whether a proxy network can really protect an application 

from DoS attacks.  Our second experiment studies the DoS-resilience capability of the proxy 

network under two large-scale attack scenarios: spreading DoS attacks where attack load is 

distributed evenly on all the edge proxies and concentrated DoS attacks where attack load is 

concentrated on a subset of edge proxies to saturate their incoming links.  Our final experiment 

studies the scalability of proxy networks with respect to DoS-resilience, by varying the size and 

width of proxy networks. 

1) Can a proxy network protect applications? 
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Figure  8.11 DOS-Resilience of Proxy Network 

We compare the impact of a DoS attack cast on the application and the proxy network.  In 

our experimental setting, the application service is connected by a 250Mbps link, and each edge 

proxy is connected by a 100 Mbps link.  Figure  8.11 shows the CDF for user-observed service 

response time of 100KB request size in scenarios with or without a proxy network.  The results 
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show that a 250Mbps attack on the application significantly increases service response time 

(about 10x) and the application becomes unusable.  However, when a proxy network is used, 

the attack has no observable impact on the user experienced performance.  The reason is 

straightforward.  By having a collection of edge proxies to dilute the impact of attack, a proxy 

network has a greater capacity than the application, thereby not as easily being saturated. 

2) How large an attack can a proxy network resist? 

To investigate how well a proxy network can tolerate DoS attacks, we launch both 

spreading and concentrate DoS attacks on the proxy network described in Section 8.2.3, which 

has 64 edge proxies and 192 proxies in total.  Each of the edge proxy has a 100Mbps uplink.  In 

both cases, we vary the aggregated attack magnitude from 3.2Gbps to 6.4Gbps.  In this 

experiment, users do not switch proxies during attacks. 

In the case of spreading DoS attacks, Figure  8.12 shows that when attack magnitude is no 

more than 6.0Gbps (recall that the aggregated uplink capacity for all the edge proxies is 

6.4Gbps), more than 95% of the users observe no significant performance degradation --the 

DoS attack has been successfully tolerated.  The reason for this is that the edge proxies 

successfully dilute attack, and even under heavy attack loads, most of the edge proxies still have 

sufficient capacity left to serve user requests.  Figure  8.12 also shows that when attack load 

reaches 6.4Gbps, all the edge proxies are saturated, significant performance degradation occurs 

for all users. 
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Figure  8.12 Redundancy to Spreading DoS Attack 
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Figure  8.13 Correlation among Proxies and Users 

More interesting, we can see large performance degradation for a small fraction of users 

(<5%) when the attack magnitude is 6.0Gbps. It is due to the correlation among proxies and 

users (see Figure  8.13). Two edge proxies A and B share an uplink of OC3 (155Mbps).  Before 

attack traffic saturates both proxies’ local links (100Mbps), the shared OC3 link gets congested 

first.  Therefore, users who use these two proxies and users who are in the same network as 

these proxies will be affected.  This effect limits the effectiveness of proxy network. Thanks to 

the accurate simulation of the MicroGrid even under heavy traffic, we can capture this 

phenomenon in the simulation. 

Figure  8.14 shows the case of concentrate attacks, where attack load is concentrated on a 

subset of proxies.  In this case, attack traffic saturates part of the proxy network and a 
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significant percentage of users are affected due to congestion and packet loss.  This effect is 

more prominent when attack load is higher than the proxies’ capacity (e.g. 4.0Gbps attack on 32 

proxies).  
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Figure  8.14 Resilience to Concentrate DoS Attack 

We observe that parts of the proxy network are not under direct DoS attacks; therefore if 

users can switch to edge proxies not being attacked, the performance can be potentially 

improved. We repeat the concentrate DoS attack experiment, and let users switch to the closest 

proxy not being saturated.  Figure  8.15 shows the CDF of user-observed performance.  

Compared with Figure  8.14, the performance has been significantly improved.  For comparison, 

Figure  8.15 also plots the baseline case where users directly access the application without 

attack traffic.  It shows that even under high attack load (e.g. 6.0Gbps) the proxy network can 

still maintain slightly better performance than direct application access without attacks for most 

users.  Therefore proxy networks can effectively resist DoS attacks. 
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Figure  8.15 Resilience to Concentrate DoS Attacks with Proxy Switching 
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This experiment demonstrate the capability of the MicroGrid to simulate large network 

accurately even under heavy traffic. With 6.4Gbps attacking traffic and average 15 hops per 

stream, we are simulating a 1000 routers network with about 100Gbps traffic flowing in the 

network. 

3) How does proxy network size affect DoS-resilience? 

Finally, we explore how varying the size (width) of the proxy network affects DoS 

resilience.  This is an important scaling property of the proxy network, showing how effective 

we can resist larger scale DoS attacks by building larger proxy networks. The goal of our 

experiment is to evaluate the amount of attack load proxy networks can withstand for a range of 

proxy network widths.  It is hard to directly measure the maximum attack load a proxy network 

can tolerate.  Instead, we set the attack magnitude to be 95% of the proxy network’s capacity, 

and measure the user-observed performance.  We define the capacity of a proxy network to be 

the sum of the link capacity of its edge proxies.  For example, if the proxy network has 16 edge 

proxies and each edge proxy has a 100 Mbps uplink, then its capacity is 1.6Gbps and the 

aggregated attack magnitude is 1.52Gbps. 

Proxy network scaling results are shown in Figure  8.16.  The X-axis is the number of edge 

proxies in the proxy network (they all have height 3), and the Y-axis is the user-experienced 

service response time for a certain percentile of users.  We can see that for up to 95 percent 

users, the curves stay horizontal and less than 2 seconds (recall from Section 8.2.4.1 that the 95 

percentile performance for direct application access without attacks is 2 seconds).  If we define 

95% users not being affected by DoS attacks as successful DoS resilience, then the amount of 

attack traffic can be tolerated grows linearly with the size of the proxy network. 
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Figure  8.16 Resilience and Proxy Network Size 

This experiment is a good demonstration of the flexibility of the MicroGrid resource 

configuration. It can easily construct proxy networks and deploy them to the virtual network. 

With the MicroGrid, it is possible to study various network configuration and application 

scenario under controlled environment. 

8.2.5 Conclusion 

Our work provides the first detailed and broad study of DoS resilience with proxy network 

in large-scale realistic networks.  The key is that we exploit the unique capability of the 

MicroGrid to simulate a realistic large-scale network (comparable to several large ISPs).  We 

use a generic proxy network and deploy it in a large simulated network using typical real 

applications and DoS tools directly.  We study detailed system dynamics under various attack 

scenarios and proxy network configurations. The major conclusion is that, in realistic large 

network environments, proxy networks can have great performance potential and scalable DoS-

resilience capability. It is a promising approach to DoS defense. These experiments and the 

conclusion are not possible without the scalable, accurate online simulation provided by the 

MicroGrid. 
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8.3 Summary 

In this chapter, the MicroGrid toolkit is successfully used on two real network related 

studies, none of them is possible without the MicroGrid. These experiments demonstrate the 

unique capabilities of the MicroGrid which are critical to the success, including: 

1) Scalability. This is required by the simulation of the whole Internet AS-level topology 

and large attack traffics. 

2) Accurate and detailed simulation. The DoS study of proxy network requires very detailed 

network modeling, including TCP slow start, TCP AIMD congestion control, and router 

queuing and dropping.  

3) Online simulation capability. The proxy network evaluation is not possible without the 

online simulation capability. Furthermore, our online simulation helps us to detect and fix a 

batch bugs in the proxy network implementation.  

4) Flexible on virtual grid configuration. The DOS study experiments require flexible 

deployment of a large number of proxy and user hosts. 



 

148 

Chapter 9 Related Work 

In this chapter, we discuss the most related work, current research on network emulation for 

application performance studies. Those are all interesting because they are quite similar to our 

approach in supporting direct execution of applications. However, there is still a major 

difference between them and the approach used in the MicroGrid, and we want to point them 

out clearly. In Section 2.1 we have discussed other related work in application performance 

modeling. 

We will briefly describe their approaches in Section 9.1 and compare them to the MicroGrid 

in Section 9.2. Then we will summarize the difference at Section 9.3. 

9.1 Network Emulation Projects 

Several recent research efforts are most similar to the MicroGrid, including ModelNet [35], 

Netbed [36], Maya[99], and Albatross [100].   

9.1.1 ModelNet 

The ModelNet [35] project at Duke University (and now at UCSD) is a software emulation 

environment on a cluster. The ModelNet simplifies network topology as a network of pipes, 

calculates the shortest-path routing, and then maps the resulting network of queues onto a set of 

emulation cores. Network IP packets from real applications running on end hosts will be routed 

through one or more cores. The core will subject each packet to delay, bandwidth, and loss 

characteristics, according to the target topology.  ModelNet moves packet hop-by-hop in the 

topology and each hop is represented by a pipe with a packet queue. Whenever a packet enters a 
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pipe queue, the emulator will calculate the queuing and link delay and forward the packet to the 

next hop, after desirable delay, if it is not dropped due to a queue overflow, randomized loss, or 

a RED policy. Thus ModelNet can track the effects of congestion and competition among 

competing packets.  

Key differences to the MicroGrid include: 

1) The MicroGrid models real network entities and their behaviors, while the ModelNet 

simplifies them to pipes and queues. In the MicroGrid, every router has fully 

functional Network Interface Cards (NIC), packet buffer queue, and protocol stack of 

IP, TCP, OSPF or BGP. Thus it is easy for the MicroGrid to incorporate detailed 

routing configuration and make dynamic routing selection as in the real Internet. The 

ModelNet, however, has to load a pre-calculated routing path at the emulation startup 

time,  lookup the static routing path for every packet entering the emulators, and then 

move it through all hops in that path. While this approach reduces the simulation 

overhead greatly, it is not easy to implement dynamic routing without major 

modification. 

2) The MicroGrid supports scaling of all resources and performance ratio precisely, while 

the ModelNet must follow the real-time emulation requirement and has no modeling of 

computation resources. This difference gives the MicroGrid more flexibility in 

simulating various, and even future, network and resources speed and ratio. 

3) The MicroGrid uses advanced load balance and scaled real-time execution for 

scalability, while the ModelNet mainly counts on approximation and some load 

balance improvement. The Distill phase in ModelNet transfers an original network 

topology into a network of pipes, and it can simplify the network, if the emulator is not 

fast enough to keep up the real-time execution, trading accuracy for reduced emulation 

cost. In contrast, the MicroGrid uses full-scale detailed packet-level simulation based 
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on a distributed discrete-event simulation engine. As for the load balance problem, 

ModelNet[101] uses the greedy k-cluster algorithm: for k nodes in the core set, 

randomly selects k nodes in the virtual topology and greedily selects links from the 

current, connected component in a round-robin fashion. They also use an approach 

similar to the MicroGrid PLACE mapping, but it is focused on minimizing Network 

traffic between cores. While there are continued improvement on scaling and 

possibility of emulating a 10,000 nodes network[102], the largest emulation on 

ModelNet we know has 4000 virtual nodes running on 9 cores [101]. 

4) The MicroGrid has higher cost on simulating every packet movement, but it can be 

used on publicly shared general Linux cluster systems, while the ModelNet required 

dedicated customized FreeBSD clusters. This may seem to be a trivial user interface 

issue, but it has a big impact in practice; since users of the MicroGrid can do much 

larger scale simulation on publicly shared large cluster systems (such as TeraGrid[2]).   

9.1.2 Netbed/Emulab 

The Netbed/Emulab [36] project, developed at Utah University, uses a set of real routers, 

switches and configurable software routers to emulate wide area network. Netbed can also 

integrate simulation, wide-area network testbeds, and emulation into a common framework. 

This framework provides abstractions, services, and namespaces common to all, such as 

allocation and naming of nodes and links. By mapping the abstractions into domain-specific 

mechanisms and internal names, Netbed masks much of the heterogeneity of the three 

approaches. The Netbed users can benefit from choosing appropriate modeling approaches for 

their special requirements, even in a single simulation experiment. 

Key differences to the MicroGrid include: 
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1)  Netbed requires real-time emulation, which has the benefit of quick simulation. At the 

same time, the real-time execution requirement is also a limit on scalability. The 

MicroGrid uses scaled real-time execution and can achieve better scalability with the 

cost of slower simulation. 

2)  Netbed also provides little to the experiment designer in the way of detailed control of 

resource speed and modeling. Regardless how many resources are dedicated in the 

Netbed resource pool, the resource type and number are still limited, when compared to 

possible virtual network configurations. The user has to select and configure whatever 

available physical resources to approximate the target virtual network, which will lead 

to possible inaccuracy. In practice, Netbed's assign [103] automatically maps virtual 

topologies which include endpoint resources, as well as network structures, onto a 

heterogeneous combination of routers, switches, and computers. In contrast, the 

MicroGrid provides accurate resource modeling, and has no inaccuracy introduced by 

this kind of approximation. 

3)  Netbed provides no load balance solution. While the assign automatically chooses 

specific endpoint and network resources to optimize their quantity subject to the 

constraints, load balance is not its direct focus. Instead, the MicroGrid provides 

advanced load balance mechanism for better scalability. 

4)   The scalability is also limited by the available physical resources in the Netbed resource 

pool. The largest automatically-configured Netbed experiment [104] of which we are 

aware has 520 virtual nodes (routers) mapped to 44 PCs. The MicroGrid can use any 

publicly available Linux cluster systems and conduct much larger scale simulation.  
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9.1.3 Maya 

The Maya [99] Project at UCLA also provides a network modeling framework for 

emulating distributed applications. Like ModelNet and Emulab, Maya supports direct execution 

of applications, and also has the real-time execution requirement. 

Key differences to the MicroGrid include: 

1)   The unique feature of Maya is that it can integrate two disparate modeling approaches 

into a unique framework; that is, the discrete-event model and the analytic model. The 

analytic model uses the fluid flow based TCP model [21] for network simulation. As 

its name suggested, the fluid model treats TCP traffics as fluids, and it derives a set of 

ordinary differential equations (ODE) to model the rate of traffic changes and 

queuing process at routers. Unlike the discrete-event model, there is no packet or 

event in a fluid model; and it only needs to solve the ODE periodically. Thus it can 

dramatically reduce the overhead of network simulation. The MicroGrid only uses the  

discrete-event model. 

2)   With cost of fidelity, Maya has the potential to support a very large network 

simulation. It is suitable for simulating backbone network with high volume of traffic 

for traffic engineering and real-time monitor and control, but it cannot capture the 

detailed packet movement, which is critical to application performance. The 

MicroGrid, however, does not trade fidelity for scalability. It uses packet-level 

detailed simulation to capture all the details of network protocols and router behaviors. 

3)   While it is shown that speed of fluid flow simulation can support real-time execution 

in long term, the periodical invocations of the computation intensive ODE solver 

causes the packets to miss their real time deadline repeatedly. This hurts the accuracy 

of real-time application emulation and limits its scalability. The largest simulation 

they have reported so far is just 60 nodes [99]. 
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4)   Maya has no support for resources modeling either, which leads to little control on 

application execution. The MicroGrid is an integrated simulation framework that 

provides simulation for all resource and network components. 

9.1.4 Panda in Albatross 

The Albatross [100] Project provides programming environments for high-performance 

Grid computing. To facilitate investigating the application performance in wide-area networks, 

they developed a Panda WAN emulator as part of their communication library. This Panda 

WAN emulator works in a way similar to that of the dummynet emulator [33].  

Key differences to the MicroGrid include: 

1)  However, thanks to the tightly couple with the communication library, one unique 

feature of the Panda emulator is that it can run parallel applications on a single parallel 

machine with only the wide-area links being emulated. The actual emulation of WAN 

behavior only models the network delay and bandwidth and cannot catch the network 

queuing and congestion status. Like all other emulation projects, it is also limited to 

real-time execution, and has no control on computation resources. The MicroGrid, 

instead, uses binary interception to redirect all network related functions call to the 

simulator. We do not distinguish between local area network and wide area network. 

While it is not clear if the accuracy of whole simulation will be affected by not 

modeling the local area network, it can definitely reduce the simulation overhead.  

2)  More accurately, the Panda is not a general network emulator like the MicroGrid, due 

to the fact that it does not provide multiplex of multiple virtual machines on a single 

physical resource. This makes it quite limited on the resources configuration that it 

can emulate. The largest simulation reported is using a 64 nodes cluster to simulate a 
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distributed application with 64 nodes [100]. This is far beyond the scalability of the 

MicroGrid system. 

9.2 Novelties of the MicroGrid Approach and Capability 

While we have mentioned the important differences between these emulation systems and 

the MicroGrid above, it is clearer to list all novelties of the MicroGrid approach and capability 

together. 

First, all of these systems require real-time execution, and the MicroGrid is unique in 

providing support for scaled real-time simulation and computation resource modeling. As we 

have discussed in Section 5.3, this feature is the base of coordination between multiple 

simulation modules, and it can also improve simulation accuracy and scalability. This capability 

does not come as an accidence; instead, it requires an implementation of TCP protocol stack in 

the network simulator, which is quite labor-intensive and slows down the simulation speed. 

With the support of the computation resource simulation discussed in Section 5.2, the 

MicroGrid can simulate grid environments with a wide range of heterogeneous resources and 

various compute and network speeds ratio. For example, the MicroGrid can accurately simulate 

fast network and resources which are still not currently available. Moreover, it can also 

accurately simulate various network and resource ratio without the limitation of available 

physical resources. None of those features are possible with any of the emulation systems listed 

above. 

Second, the network modeling in these emulation systems either use approximation models 

or have limited scalability. These approximations reduce the cost (compared to the MicroGrid’s 

global synchronized simulation) to achieve faster execution. The MicroGrid is unique in that it 

uses realistic network topologies, realistic routing protocol, detailed packet level simulation, and 

background traffic from aggregated large numbers of traffic flows. The MicroGrid does not 
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make tradeoffs between accuracy and scalability in network simulation, and it tries to provide 

the most accurate simulation result possible. With scalable hardware like modern clusters, we 

demonstrate that this approach is feasible, even to simulate a large ISP network. 

Third, the MicroGrid has the most advanced support for network routing. It uses OSPF for 

intra-domain routing and BGP for inter-domain routing. This can help the MicroGrid to provide 

realistic network routing selection and dynamic routing reaction under network congestion or 

link failure. This is important when studying the application performance under extreme and 

unusual conditions. All other projects just use pre-calculated static routing information. For 

example, the ModelNet uses pre-calculated shortest routing path based on static network 

topology. Static routing has much less overhead in simulation execution, and the routing table 

size (not the real emulation yet) can scale to hold a network with about 10,000 nodes[102]. 

However, it is difficult for those projects to introduce dynamic routing into the simulation. 

Fourth, advanced load balance is also a critical feature of the MicroGrid. Load balance is 

known to be an important and hard problem for the scalability of distributed network 

simulations or emulations; However, there are only a few efforts in network 

simulation/emulation community to solve this problem. Many projects, including the Maya and 

Albatross, use either manual partitioning or simple graph partitioning based on network 

topology. ModelNet[101] uses the greedy k-cluster algorithm: for k nodes in the core set, 

randomly selects k nodes in the virtual topology, and greedily selects links from the current 

connected component in a round-robin fashion. They also use an approach similar to our 

PLACE mapping, but this is focused on minimizing Network traffic between cores.  Netbed's 

assign [103] maps virtual topologies which include endpoint resources, as well as network 

structures, onto a heterogeneous combination of routers, switches, and computers. Critical 

issues are time to compute mapping, physical resources used, and sufficient link capacity.  Thus, 

assign chooses specific endpoint and network resources to optimize their quantity subject to the 
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constraints.  Load balance is not a direct focus. During the time of this dissertation writing, we 

noticed that the BGP++[105] is also using graph portioning approaches for load balance in its 

distributed network simulation. 

9.3 Summary 

Even with similarity in supporting real application execution, the MicroGrid is 

distinguished from other emulation project for goal, accuracy and scalability. 

The key difference between MicroGrid and these emulation approaches is the scaled real-

time execution and the more flexible application control. The scaled real-time execution 

relieves us from the real-time limitation of emulation, and provides much larger scalability and 

accuracy. Since the MicroGrid is an integrated simulation of network and grid resources, it 

provides resource modeling and flexible control on application execution. Combined with the 

scaled real-time execution, the MicroGrid can study various, even future, hardware speeds and 

ratios. 

Beside our novel approach for virtual grid modeling, our automatic load balance 

mechanisms also provide major scalability advantage over other systems. The realistic packet-

level network simulation with O(104) routers enables accurate grid dynamic study at 

unprecedented scale and great opportunities for new insights.  
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Chapter 10 Summary and Future Work 

Having presented and evaluated the scaled real-time online simulation and the load balance 

algorithms for better scalability, we now summarize our work and list the impact of our work on 

simulation research. After that, we enumerate some limitations on our system and possible 

directions of future work. 

10.1 Summary 

The increasing acceptance of grid computing in both scientific and commercial 

communities presents significant challenges for understanding the performance of applications 

and resources together. The associations between applications and resources are no longer static, 

and dynamic resource sharing and application adaptation further complicate the situation.  

To meet the emerging modeling needs and to enable growth in understanding the dynamic 

properties of grids, we have developed the scaled real-time online simulation mechanism and 

implemented it in a toolkit called the MicroGrid.  The MicroGrid enables accurate and 

comprehensive study of the dynamic interaction of applications, middleware, resource, and 

networks.  The MicroGrid creates a virtual grid environment – accurately modeling networks, 

resources, the information services (resource and network metadata) transparently.  Thus, the 

MicroGrid enables users, grid researchers, or grid operators to study arbitrary collections of 

resources and networks.   

Accuracy and scalability are the two major challenges in virtual grid simulation. In 

computation resource modeling, we use the soft real-time process scheduling, which can 

provide accurate computation resource simulation efficiently. This technique has few 
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requirements; it can be used on any OS that supports POSIX.5 thread system. For network 

modeling, we use packet-level online network simulation based on discrete-event simulation 

engine, enhanced with OSPF and BGP routing protocols. With the support of transparent live 

application traffic interception and the coordination through scaled real-time execution, real 

application can be executed directly on a virtual grid environment; both computation and 

network behaviors can be modeled accurately.  To validate our approach and the MicroGrid 

implementation, we present experimental results with applications, showing that the MicroGrid 

not only runs real grid applications and middleware, but it accurately models both the 

underlying resource and network behavior.   

We also study a range of techniques for scaling a critical part of the online network 

simulator to the simulation of large networks.  These techniques employ a sophisticated graph 

partitioner, and a range of edge and node weighting schemes exploiting a range of static 

network and dynamic application information.  By carefully mapping the virtual network to 

physical resources using multi-objective graph partitioning algorithms, we achieve good load 

balance and better scalability in network simulation.  Our studies show that the static network 

topology and application placement information can be exploited to achieve good balance for 

some application. These load balance approaches are evaluated against large-scale networks, 

including both single-AS network and multi-AS network. The best of these, called hierarchical 

profile-based load balance (HPROF), can increase efficiency and scalability by over 100 times, 

achieving a parallel efficiency of over 40% on a 90-node cluster for a range of experiments. 

This provides a great chance for scalable network simulation. Combining with our packet-level 

hop-by-hop network simulator and detailed BGP4 protocol support, we demonstrate that we can 

provide realistic large-scale network simulation for networks, including about 20,000 routers, 

which is comparable to a large ISP network.  
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To demonstrate the capability of the MicroGrid toolkit, it is used in two network related 

research. The first one is the BGP Simulation reality check study, where we use the MicroGrid 

to simulate the real Internet AS level topology with detailed BGP routing policy configuration. 

The result shows that there is still a big gap between the simulated result and real Internet 

routing choices, which warrants further investigation. The second study is on resilience DOS 

attacks, using overlay networks. On the virtual grid testbeds provided by the MicroGrid, 

experiments show that overlay networks can be used to alleviate the resource level attack 

efficiently.   

In summary, the MicroGrid toolkit, then our approach for integrated online simulation, has 

achieved good scalability and fidelity to study real world large-scale Grid research problems. Its 

capability is larger than the simulation requirements of most existing grids, and it is large 

enough to model future grids. 

10.2 Impact 

The coming MicroGrid toolkit represents a big progress in the practice of simulation on 

application performance modeling. The large-network simulations at detailed packet-level 

provide new capability and chances for deeper insight. The MicroGrid toolkit could be useful 

for network and grid researchers, grid administrators, grid designers, and application designers. 

For example, beside the BGP reality check and Denial-of-Service attacks in Chapter 8, it can 

also be used in the study of: 

1) Large-scale behavior of peer-to-peer applications (e.g. Kazaa [106], BitTorrent[107], 

Gnutella[108]) in mixed backbone, access, and local area networks.  

2) Adaptive applications and rescheduling in controlled Grid resource environment 

3) Resource selection, and the impact of competitive resource sharing in large-scale 

Grids 
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4) Grid systems performance bottleneck detection and system abnormal diagnose in a 

controlled repeatable environments. 

This is just short list of direct applications of the MicroGrid. Wide acceptance of the 

MicroGrid toolkit will fundamentally change the current practice in network and grid related 

research. People will no longer accept any results or conclusions obtained from experiments on 

small testbeds or small simulation, with simple dumbbell networks. Instead, they should be 

exercised and examined in large-scale detailed virtual grid environment, which is a direct 

simulation, comparable to the final target deploy environments. Since the MicroGrid can 

provide such virtual grid environment easily, and can be used with direct execution support, this 

requirement is reasonable and will not raise large overhead for the researchers. The entire 

community will benefit from this practice that will result in more creditable results and more 

productive research.  

10.3 Limitations 

While the MicroGrid represents a big progress in network simulation and grid modeling, it 

can be further improved if we can address the following limitations. 

First, better understanding of the network itself will further improve the realism of network 

simulation. This includes characteristics of Internet network topologies, link latency and 

bandwidth distribution, routing configuration, and background traffic. i) Current network 

topology generation research mainly focuses on the graph connectivity level, and there are few 

research studies on realistic link bandwidth distribution. As we show in our DoS studies in 

Section 8.2, realistic link bandwidth is very important to experiments involving large volume of 

data transfer, which is quite common for grid applications. ii) Realistic routing and its dynamic 

response to network congestion and failure are also critical to grid application performance. 

While the MicroGrid provides the dynamic routing capability of OSPF and BGP4, how to get 



161 

 

realistic routing configuration is still a pending challenge. Our automatic BGP configuration in 

maBrite is just a first step in this direction. iii) There are no realistic background traffic 

generation and modeling tools available. Currently in MicroGrid we create a large number of 

traffic flows (WWW, TCP, and UDP traffic) randomly distributed in the network, and expect 

that the aggregated effect will create reasonable network dynamic similar to real network. While 

we believe it partially solves the background traffic issue, the result is not validated; it also 

introduces a large volume of traffic and load on simulation. Usually, this load is not of interest 

to the user. So a realistic background traffic generation and modeling can greatly improve the 

realism of the MicroGrid simulation result; it can also improve the capability for simulating 

larger resources and applications. 

Second, better application performance model can further improve the capability of the 

simulation. The MicroGrid uses direct execution to capture the subtle application details and 

temporal interaction between application, middleware, resources and network. This is a good 

choice, given the fact that no good application performance model is available. But this 

approach also means that we have to run the application directly, consuming the same amount 

of memory, storage, and computation power. Even the MicroGrid is scalable in nature and it is 

possible to trade the simulation speed for larger experiment; the overall capability is limited by 

the available physical resources. The MicroGrid can benefit by better application performance 

models which abstract and reduce the real memory and computation requirement without 

hurting the accuracy. 

Third, better understanding of methodology for extrapolation can improve the capability on 

understanding grid dynamics. While we can use the MicroGrid to study a large number of 

network topologies, different resource configurations, and multiple application setups, the total 

number of possible experiments is still limited when compared to all possible scenarios. We 
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need better understanding on how to extrapolate from a small set of Grid simulations to a much 

broader space of network environment and application behavior. 

10.4 Future Work 

The three limitations listed above are the long term research directions that can 

fundamentally improve the overall simulation capability. In the meantime, there are a few 

efforts are possible to improve the MicroGrid fidelity and scalability directly. 

Due to physical resource limitation, we only use a 128-node cluster in our experiments. 

However, it is clear that there is still more parallelism in the large-scale network simulation. In 

future work, we will use MicroGrid to study larger networks and application, specifically using 

a 256-node Itanium-2 Linux cluster to simulate a network with 100,000 network entities, which 

can be taken as a significant fraction of the real Internet with hundreds of ASes. Under this scale 

of a network, we expect to experience much larger load balance challenge, and therefore, we 

have to develop a traffic-based load balance solution for better scalability. While we selected 

the GridNPB benchmarks for our experiments, our evaluation could be improved by studies 

with better benchmarks suites or larger real grid applications.  In the future, we will also use 

MicroGrid to study larger scale real Grid applications, including resources scheduling and 

overlay network behaviors. 

The soft real-time process scheduler can be further improved, especially for multiple 

applications, with computation and communication mixed together. Currently we only 

guarantee the CPU quota of a virtual machine, and do not emphasize how the quota is allocated 

to all processes on that virtual machine. Fairness is not guaranteed, and there are may be some 

processes in starvation that affect the application dramatically. If accuracy is really important, 

we may have to investigate other more sophisticated scheduling machinist, such as using hard 

real-time scheduler on real-time operating system, or virtual machine monitors.  
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Automatic network mapping and the load balance of distributed network simulation still 

remains one of the hardest problems. Load imbalance happens due to burst/variation of traffic 

injected from the application.  Static partitions are fundamentally limited for large simulation, if 

traffic varies widely. Even the hierarchical profile-based partitioning algorithm discussed in 

Section 5.4 will not solve the basic problem, especially when the simulation runs for a long time 

and the traffic pattern changes dramatically during the simulation. Dynamic remapping of the 

virtual network, during the simulation, is the only solution. Such dynamic remapping is a major 

challenge for distributed simulators like MaSSF, since it also has a scaled real-time requirement. 
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Appendix A Automatic BGP Configuration 

Following the heuristic rules listed in Section 2.3, we automatically configure Internet-like 

network topologies with realistic routing configuration, and expect to get a routing pattern 

similar to that of the real Internet. The procedure for network topology generation and 

automatic routing configuration is shown in the following: 

1) Generate AS level topology following the Power Law 

2) Classify ASes according connection degrees. 

i) Core: ASes with connection degrees of top 2 

ii) Stub: ASes with connection degree of 1 or 2 

iii) Regional ISP: all the other Ases 

3) Decide AS relationships 

i) Provider-and-Customer: 

a. Core -- Stub,  

b. Regional ISP – Stub,  

c. Core – Regional ISP 

ii) Peer-and-Peer: between all ASes in the same level 

4) Setup Import Routing Policy 

i) Accept all incoming routes 

ii) Set Local Preference according to Next Hop AS, which prefer routes from Customer, 

over routes from Peer, and over routes from Provider 

5) Setup Export Routing Policy 
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i) To Provider: Export local and Customer routes 

ii) To Peer: Export local and Customer routes 

iii) To Customer: Export all routes 

6) Create topology for every Stub AS  

i) Follow the Power Law 

ii) Use OSPF routing inside the AS 

iii) Use default routing to hosts outside local AS 

iv) Pickup default/backup routers for multi-homed Ases 

This is just a high level abstract of our implementation in the maBrite topology generator, 

which is based on BRITE tool. To create a real functional topology, there are more details that 

need to be addressed. For example, in Step 3, we must guarantee that every non-Core AS has a 

path including Provider-and-Customer links to a Core AS so that this AS has full connectivity 

to the whole network. Furthermore, we should also guarantee that the Core ASes form a clique 

as observed for the Dense Cores, and additional links between Core ASes are added when 

necessary.  

After the AS relationships are defined, the routing policy setup is straightforward.  The only 

problem is how these policies are expressed in the simulator input Domain Model Language 

(DML) file.  For a detailed discussion of this, the interested reader is referred to the MicroGrid 

user manual.  

The last thing we want to emphasize is the default routing embodied in Step 6. It is very 

important to use default routing in Stub ASes so the huge external BGP routes need not be 

injected into the OSPF routing tables. This approach can reduce the overhead of Stub AS 

routers greatly and is widely used in real world practice. 
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