
Replication Strategies for Highly Available
Peer-to-peer Storage Systems

Ranjita Bhagwan, Stefan Savage, and Geoffrey M. Voelker
Department of Computer Science and Engineering

University of California, San Diego

Abstract

Failure is inevitable: disks fail, hosts crash, networks par-
tition, applications stop. Consequently, the principal chal-
lenge in designing highly-available systems is to tolerate
each failure as it occurs and recover from its effects. For
large systems, or systems with unreliable components, such
failures can cease to be exceptional events, but instead may
become the common case. Perhaps no design point is more
challenging in this respect than that faced by heterogeneous
peer-to-peer systems. Such systems are typically composed
of very large numbers of hosts, of which only a minority
may be available at any one time. In this environment, fail-
ure is not only common, but pervasive. This paper analyzes
the challenges and limitations in building a highly-available
storage system in such a peer-to-peer environment. In par-
ticular, we explore the design requirements on failure toler-
ance and failure recovery in environments with limited host
availability. Our contributions are threefold: First, we pro-
vide an analytic model for reasoning about the efficiency of
replication and erasure encoding as temporary storage re-
dundancy mechanisms. Second, we extend this framework
to model the availability of groups of files or file systems.
Finally, we incorporate the costs of maintaining a given level
of availability in the long term by recovering from persistent
storage failures. We show that even in environments with
pervasive failure it is possible to offer a storage service with
a high degree of availability at a moderate cost in storage
overhead.

1 Introduction

In the past few years, peer-to-peer systems have be-
come an extremely popular platform for large-scale
content sharing. Unlike traditional server-based stor-
age systems, which centralize the management of data
in a few highly reliable servers, peer-to-peer stor-

age systems distribute the burden of data storage and
communications among thousands of individual client
workstations. The wide-spread attraction of this model
arises from the promise that idle resources may be
efficiently harvested to provide scalable storage ser-
vices. Unfortunately, while significant progress has
been made towards providing scalable data access in
peer-to-peer systems [16, 17, 19, 22], the challenges in
providing acceptable levels of availability are poorly
understood by comparison.

At the heart of this challenge is the ad hoc man-
ner in which peer-to-peer systems are constructed.
In contrast to traditional distributed systems, peer-to-
peer systems are composed of components with ex-
tremely heterogeneous availabilities – individually ad-
ministered host PC’s may be turned on and off, join
and leave the system, have intermittent connectivity,
and are constructed from low-cost low-reliability com-
ponents. For example, one recent study of a popular
peer-to-peer file sharing system found that the major-
ity of peers had application-level availability rates of
under 20 percent [18]. In such an environment, fail-
ure is no longer an exceptional event, but is a perva-
sive condition. At any point in time the majority of
hosts in the system are unavailable and those hosts that
are available may soon stop servicing requests. While
most peer-to-peer systems employ some form of data
redundancy to cope with failure, these solutions are ad
hoc and generally poorly matched to the underlying
host failure distribution or the level of availability de-
sired by users. Consequently, it remains unclear what
availability guarantees can be made using existing sys-
tems, or conversely how to best achieve a desired level
of availability using the mechanisms available.

In this paper, we present an analytic framework for
evaluating the minimal storage costs required to pro-
vide a given level of availability as a function of the
underlying host failure distribution. We consider sev-
eral data redundancy mechanisms including conven-

1

tional replication strategies (whole file and per-block)
as well as file-level erasure coding with variable re-
dundancy. Each of these approaches has its advantages
and disadvantages and we recognize that workload and
system implementation issues may favor one approach
over the other in particular scenarios. For example,
whole-file replication allows simple and low-overhead
implementations of naming and lookup, while block-
level replication allows increased performance through
parallel downloads at the cost of additional storage to
provide a given level of availability. The models we
present in this paper allow a system designer to eval-
uate such tradeoffs with full knowledge of the costs
required for each mechanism to achieve a desired level
of availability.

We also consider availability at two different time
scales, reflecting the clear cut division between short-
term transient failures dominated by periodic user be-
havior and long-term persistent failures that reflect per-
manent data loss. For example, in peer-to-peer client
populations many users switch off their computers at
night, making them unavailable for a period of hours
every day. This behavior is independent of the user de-
ciding to stop the use of the system altogether, or of
the machine experiencing a hardware failure. We cat-
egorize the former behavior as one that determines the
short-term availability of files in the system, while the
latter is more likely to affect a file’s long-term avail-
ability. A system designer addresses short-term avail-
ability by ensuring that there is sufficient data redun-
dancy to tolerate transient failures during a relatively
short period of time – such as a 24 hour period – over
which the host availability distribution is known. By
contrast, long-term persistent failures, modeled by a
decay distribution, require the system to explicitly re-
cover by adding additional redundancy into the system
to match the storage services that are lost. Finally, we
show how to combine these two approaches to guar-
antee a specified level of availability over an extended
period.

The remainder of this paper is structured as follows:
Section 2 provides background and describes the re-
lated work that led to our analysis. In Section 3 we
describe our general analytic approach and the simula-
tion framework we use to validate it. Sections 4 and 5
develop and validate analytic models for evaluating the
short-term fault tolerance of conventional replication
and erasure coded replication strategies respectively.
We present the analysis of failure recovery for provid-
ing long-term availability in Section 6 and Section 7

discusses the practical implementation issues not cov-
ered by our formal model. Finally, we summarize our
results in Section 8.

2 Related Work

All peer-to-peer systems must employ some form
of storage redundancy to provide acceptable service
to their users. In systems such as Napster and
Gnutella [8], data replication occurs implicitly as each
file downloaded by a user is replicated at the user’s
workstation. However, since these systems do not ex-
plicitly manage replication, the availability of an ob-
ject is fundamentally linked to its popularity and rarely
accessed objects cannot be reliably accessed. More-
over, since this approach does not mask failures, users
must repeatedly access different replicas until they find
one on an available host. By contrast, next-generation
peer-to-peer storage systems, such as the Cooperative
File System (CFS) [4], address both of these limita-
tions through an explicit replication strategy that hides
failures from the user and is workload independent.

Systems using replication must also choose the
granularity at which data is replicated: whole-file
vs block-level. Whole-file replication, as used in
Gnutella, is simple to implement and has a low state
cost – it must only maintain state proportional to the
number of replicas. However, the cost of replicating
entire files in one operation can be cumbersome in both
space and time, particularly for systems that support
applications with large objects (e.g., audio, video, soft-
ware distribution).

Block-level replication, as used by eDonkey [7] and
CFS [4], divides each file object into an ordered se-
quence of fixed-size blocks. Because individual parts
of an object may be named independently, a block-
level system may download different parts of an object
simultaneously from different peers and reduce overall
download time. Also, because the unit of replication
is small and fixed, the cost to replicate an individual
block can be small and can be distributed among many
peers. Finally, block-level representation allows large
files to be spread across many peers even if the whole
file is larger than any single peer is able to store. How-
ever, an important drawback of block-level replication
is that if enough replicas fail such that any single block
cannot be found, then the entire file object is unavail-
able. For example, measurements of the CFS system
using six block-level replicas show that when 50 per-
cent of replicas fail the probability of a block being

2

unavailable is less than two percent [4]. However, if
an object consists of 8 blocks then the expected avail-
ability for the entire object will be less than 15 percent.

Several systems, including Intermemory [3],
Swarmcast [20], Oceanstore [11], and FreeHaven [5],
have recognized the need to address this issue and use
erasure codes (EC) to achieve higher availability than
whole-file and block replication using reduced storage.
Erasure codes, such as Reed-Solomon [15] and Tor-
nado [2] codes, provide the property that a set of b
original blocks can be reconstructed from anym coded
blocks taken from a set of cb (where m is typically
close to b, and c is typically a small constant). For
large files, erasure codes are a more efficient method
for providing file availability guarantees compared to
whole-file replication.

In all of these systems the amount of redundancy,
either the number of replicas or the stretch factor c, is
determined in a static ad hoc fashion and is not closely
coupled with the required level of file availability or
the shape of the underlying host availability distribu-
tion. This could lead to overestimating the needed re-
dundancy, wasting storage needlessly. Or worse, the
required redundancy might be underestimated, provid-
ing a lower level of availability than necessary.

The closest analog to our work is that of Weather-
spoon and Kubiatowicz [21] who compare the avail-
ability provided by erasure coding and whole file repli-
cation under particular failure assumptions. The most
critical differences between this work and our own re-
volve around the failure model. In particular, Weath-
erspoon and Kubiatowicz focus on disk failure as the
dominant factor in data availability and consequently
miss the distinction between short and long time scales
that is critical to deployed peer-to-peer systems. Con-
sequently, their model is likely to dramatically overes-
timate true file availability in this environment.

3 System Model

In this section, we describe the common aspects of our
system model that we use to evaluate the conventional
and erasure coded replication strategies in the rest of
the paper. In particular, we describe our replica place-
ment policy, our probabilistic models for characteriz-
ing host availability and host storage requirements, and
our simulation methodology for validating our analytic
methods.

3.1 Replica placement policy

Our goal is to guarantee a certain level of availability
for all files in a peer-to-peer system. For any repli-
cation strategy, the optimal solution is a combinato-
rial function of per-host availability and the number of
replicas per file that produces a mapping between in-
dividual replicas and individual hosts. This approach
has several drawbacks that make it impractical. First,
it imposes a challenging system requirement that the
availability of each host be accurately tracked and esti-
mated. This requirement is methodologically difficult
and presents significant communication overheads as
the system scales to large numbers of hosts. Second,
even given perfect per-host availability information the
solution to this combinatorial optimization problem is
NP-hard.

To make our analysis both practical and tractable,
we assume that host failures are independent and iden-
tically distributed (iid), allowing replicas to be as-
signed to hosts randomly. Implementing this random
placement policy is straightforward in practice, scales
well as the number of hosts increase, and also fits well
with the way current peer-to-peer systems like Chord
and Pastry operate. In practice the iid assumption is
reasonable with the exception of diurnal correlation
between hosts (hosts tend be turned on and off accord-
ing to daily work patterns that are highly correlated
in individual time zones). We discuss the impact of
this deviation and how to accommodate it in practice
in Section 7.

Table 1 summarizes the variables used in the analy-
sis. Using y random replica placements and a known
host availability distribution H(x), we can estimate the
probability P that there are sufficient replicas available
at the time the file is accessed as follows. If we ran-
domly pick h hosts from an n-host system, then the
probability of exactly y of the hosts being up follows
a binomial distribution with the mean of the original
host availability distribution H(x). This implies that
any host chosen at random from the pool of hosts has
an expected availability of �H .

To represent distributing replicas of a file across all
hosts, we can pick h hosts at random and calculate the
probability that exactly y hosts out of the h are avail-
able. This is equivalent to tossing a coin with bias �H
h times, and calculating the probability of obtaining
exactly y heads. It is known that the number y fol-
lows a binomial distribution with mean �H and vari-
ance �H(1 � �H) [6]. So, if Y is the random variable
for the number of hosts available, then the following

3

Variable Definition

n No. of hosts in the system
f No. of files in the system
c Replica factor for conventional

replication, stretch factor for erasure
coding

b No. of blocks in a file with erasure
coding

Aj ; 1 � j � f Required availability of file j
H(x) Host availability distribution
�H Mean of host avail. distribution
�H

2 Variance of host avail. distribution
Y Random var. for number of hosts

available out of h randomly picked
hosts

W = Y=cb Random var. for fraction of number
of hosts out of cb randomly picked
hosts that are available

Z Random var. for the storage per host

Table 1: Summary of variables used in the probabilistic
analysis.

formula estimates the number of available hosts:

P (Y = y) =

h

y

!
�H

y(1� �H)
(h�y) (1)

We use this result in later sections to derive formulas
for file availability for both conventional and erasure
coded replication.

3.2 Storage requirements

The overall system storage requirements SS for a par-
ticular replication strategy can be directly calculated
using the degree of replication c and number of files in
the system f : SS = cf .

Moreover, using our random placement policy, we
can bound the amount of data stored on a given host
to be no more than x with probability P . To do this,
note that we are assigning r data objects to n hosts
in a random fashion. This is equivalent to the well-
known occupancy problem which states that if r balls
are randomly assigned to n bins, the number of balls
in any of the bins is an independent random variable Z
that follows a Poisson distribution with mean r=n and
variance r=n [6]. So the probability that a certain host
contains exactly x data objects is given by:

P (Z = x) =

�
r
n

�x
e�r=n

x!
(2)

and the probability that a host contains at most x
objects is:

P (Z � x) =
xX

k=0

�
r
n

�k
e�r=n

k!
(3)

With these formulas for P , we can determine
bounds using confidence intervals on the required stor-
age per host required by a particular replication strat-
egy.

3.3 Simulation Methodology

In order to verify our analyses, we use a Monte-Carlo
simulation of a system of 1000 hosts. The number of
files in the system is chosen to be 1000. Since we
use a randomized replica placement strategy without
any storage limits per host, increasing the number of
files in the system does not change the behavior of the
system in terms of availability of the files. File sizes
follow a normal distribution with mean 700 MB and
standard deviation 100 MB. These numbers were cho-
sen to reflect the size of large multimedia files, such as
movies, that are roughly around 700 MB in size. We
chose a mean host availability of 0.5 based upon the
measurements in [18], which found that the host avail-
ability distribution roughly follows a uniform random
distribution between 0 and 1.

4 Conventional replication

In this section, we characterize file availability,
system-level availability, and the storage requirements
for the conventional replication strategy.

4.1 File Availability

With conventional replication, the goal of the system
is to use the minimum number of replicas of a file,
or replication factor, to provide a desired level of file
availability. We consider both whole-file and block-
level replication schemes.

Whole-file replication. Suppose we make c copies
of the file and put them on different hosts. We need at
least one of those c hosts to be available to recover
the file. The file availability is therefore defined as
the probability that one or more hosts are up. Using

4

Required availability Replication factor (c)

0.800 3
0.900 4
0.950 5
0.990 7
0.995 8
0.999 10

Table 2: Number of replicas needed for said file avail-
ability for mean host availability 0.5.

Equation 1 from Section 3.1, the probability that one
or more hosts are up is (1 - P (Y = 0)), or P (Y � 1),
where Y is the random variable for the number of
available hosts. Since Y follows a binomial distribu-
tion,

A = P (Y � 1) = 1� (1� �H)
c

c =
log(1 �A)

log(1 � �H)
(4)

This formula enables us to calculate the replication
factor for a desired degree of file availability. Suppose
we want the file availability to be 0.99. The number
of replicas needed for this with random placement is
given by substituting A by 0.99 and solving the above
equation. Table 2 gives the value of c for a range of
required file availabilities, assuming a mean host avail-
ability of 0.5. The replication factor should not be af-
fected by variations in the host availability distribution,
as long as the mean stays the same.

Figure 1 shows the replication factor for varying val-
ues of host availability and required file availability.
The replication factor can get quite large for low val-
ues of mean host availability. For example, for mean
host availability of 0.2, and required file availability of
0.99, the replication factor is 42. For large files, this
can be a problem because the system would not scale
well in terms of total storage required to replicate the
file such that the system can meet the required avail-
ability.

Block-level replication. The advantage of block-
level replication is that, for variable file sizes, storage
burdens would be more evenly distributed between the
hosts. Also, it has the advantage of the ability to per-
form parallel downloads and load balancing.

If we divide the file into b blocks, make c copies of
each of them and place one block per copy per host, as
in CFS and eDonkey, the availability of the file is given
by:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Mean host availability
0.9

0.99
0.999

0.9999
0.99999

File availability

0

20

40

60

80

100

120

Replication factor

Figure 1: The number of replicas that we predict we
need with conventional replication.

A = P (Y � 1) = (1� (1� �H)
c)b

To achieve the same level of availability in the
block-level replication case as when doing whole-file
replication, the number or replicas c would need to
be larger. So the scalability of this scheme with re-
spect to total storage required is even lower than that
of the whole-file replication scheme. In other words,
the availability of whole-file conventional replication
is always better than block-level replication.

Validation. To validate our analytic model of
file availability for conventional replication, we simu-
lated file availabilities according to our random replica
placement algorithm and compared them to the re-
quired file availability. In Figure 2, we plot the den-
sity of deviations of simulated per-file availability from
required per-file availability for 1000 files. Most of
the files either show equal or better actual availabil-
ity than the required file availability. However, there
are some files that are less available than the required
value. This variation arises from the fact that the num-
ber of hosts chosen on which to replicate the files is not
very large; for example, for 0.9 availability, we make
only 4 copies of the file.

4.2 System-level availability

In addition to file availability, we are also interested in
the system availability provided by conventional repli-
cation. System-level availability is a global measure of
the availability of all of the files stored in the system,
and reflects the availability of the system as a whole.

5

1

10

100

1000

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

N
um

be
r

of
 fi

le
s

Required availability - Actual availability

file av 0.99

Figure 2: The density of deviations from the required
availability for files, for conventional replication. The
data are gathered from a simulation of 1000 files, with
required availability per file = 0.99.

Formally, we define system-level availability SA as the
average availability of all files in the system:

SA =
1

f

fX
j=1

Aj ; 1 � i � f: (5)

If all files use replication factors for a minimum
availability A, the system-level availability will also
evaluate to A:

SA = 1=f � (f �A):

Validation. Using the parameters from Section 3.3,
we simulated how system-level availability adheres to
the expected values obtained from the analysis. To see
the effects of variance in the host availability distri-
bution on system-level availability, we simulated both
a constant host availability distribution with mean 0.5
and zero variance. Then we use a uniform random
host availability distribution between 0 and 1, which
has a mean and variance of 0.5 and 1/12, respectively.
Figure 3 shows simulated values of SA for these dis-
tributions while varying the replication factor for the
files. From the figure, we see that there is not much
difference between the analytical results and the two
simulations, indicating that variance in host availabil-
ity distributions does not cause significant deviations
from our analysis.

4.3 Storage requirements

To balance the storage requirements per host for con-
ventional replication, we provide probabilistic bounds

0.5

0.6

0.7

0.8

0.9

1

1.1

2 4 6 8 10 12 14 16 18

S
ys

te
m

-le
ve

l a
va

ila
bi

lit
y

(S
A

)

Number of replicas

Analytical
Simulated(Constant avail. distn)

Simulated(Unif. rand. host avail. distn)

Figure 3: This graph shows how close the simulations
of SA are to the required availability for erasure cod-
ing, which is shown by the bold line.

P (Z � x) x

0.800 �+ 1:29�

0.900 �+ 1:65�

0.950 �+ 1:96�

0.990 �+ 2:58�

0.995 �+ 2:81�

0.999 �+ 3:30�

Table 3: Values of a random variable that follows a
normal distribution for the given level of availability.

on the maximum storage required per host when us-
ing randomized placement and conventional replica-
tion. According to Equation 2 in Section 3.2, the num-
ber of files per host follows a Poisson distribution with
mean cf=n. Because it is difficult to directly evaluate
the Poisson distribution, we use the normal approxi-
mation to the Poisson distribution [6]. With the nor-
mal approximation, if we perform random placement
of files on hosts then the number of files per host fol-
lows a normal distribution with mean �Z = cf=n and
variance �Z2 = cf=n. Table 3 shows the values of x
for different values of P (Z � x), which is the proba-
bility that the storage per host is less than or equal to
x. These results are standard for any normal distribu-
tion. Using this table, we can calculate the value of
x for given values of P (Z � x). For example, with
0.9 probability, the storage per host will be less than or
equal to �Z + 1:65�Z . This can be calculated by sub-
stituting the values for c, f and n. With c=7, f=1000
and n=1000, this would evaluate to 11.

Validation. Figure 4 shows the simulated cumula-
tive distribution of storage per host for this system, and

6

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000 14000

N
o.

 o
f h

os
ts

Storage (MB)

Simulation A = 0.99
Poisson A = .99

Normal approx A=0.99

Figure 4: Cumulative distribution function of the stor-
age per host for conventional replication.

the Poisson and normal fits to it. Both distributions fit
well with the simulated results. Using the storage per
host analysis arguments, we can say that if we replicate
files for an availability of 0.99, i.e., we make 7 copies
of each file, then in a system with a thousand hosts and
a thousand files, an individual host will store less than
7700MB of data 90 percent of the time.

5 Erasure coded replication

The addition of erasure coding (EC) to block-level
replication provides one key advantage. It dramatically
improves file availability since the increased intra-
object redundancy can tolerate the loss of many indi-
vidual blocks without compromising the availability of
the whole file. The stretch factor of an erasure code is
the measure of the amount of redundancy added to the
file. It is equal to the number of post-encoded blocks
over the number of pre-encoded blocks. For example,
for the same storage requirements, one can either du-
plicate b blocks of an object or code those blocks into
2b EC blocks. Here the stretch factor for the code is
2. If the blocks are distributed across 2b nodes, then,
when using standard block replication, at least one of
two hosts for each block must be available to recon-
struct the object. When using EC block replication,
however, any b of the 2b hosts storing EC replicas need
be available to reconstruct the object.

5.1 File Availability

First, we perform a probabilistic analysis of file avail-
ability for erasure coded replication using the formulas
from Section 3.1. The goal is to determine the stretch

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20

P
ro

ba
bi

lit
y

No. of hosts

binomial dist.
normal approx.

Figure 5: The graph shows the normal approximation
to the distribution of the number of hosts available out
of 20 randomly chosen hosts.

factor a file must have to achieve a desired file avail-
ability. Throughout the analysis we assume that we
place one encoded block per file per host. In Section 7
we show how this assumption can be relaxed without
affecting our results.

Our objective is to calculate the required stretch fac-
tor c for a file to obtain an availability greater than
or equal to A, given the host availability distribution
H(x) and the value of b. We know from earlier discus-
sions that, to recover the file, any b out of the cb blocks
need to be available. Since we assume that we have
one block per file per host, this means that at least any
b out of the cb hosts need to be available. This corre-
sponds to the sum of the probability that any b hosts
are available and cb� b hosts are down, the probability
that any b+1 hosts are available and cb�b�1 of them
are not, etc. Using equation 1 this can be written as

A = P (Y � b) =
cbX
j=b

cb

j

!
�H

j(1� �H)
(cb�j): (6)

This equation results from the fact that the number
of hosts available follows a binomial distribution. The
right-hand side of this equation does not have a nice
closed-form expression. Hence, given a value for A,
expanding it and solving for c is a non-trivial task.
However, if cb is large enough, we can use the normal
approximation to the binomial distribution [6] to solve
for c, which is a direct result of the Central Limit The-
orem. Using this, we can say that the random variable
W = Y=cb follows a normal distribution with mean
�W = �H and variance �W = �H(1 � �H)=cb. W

7

Required Availability x

0.800 �� 1:29�

0.900 �� 1:65�

0.950 �� 1:96�

0.990 �� 2:58�

0.995 �� 2:81�

0.999 �� 3:30�

Table 4: Values of a random variable that follows a
normal distribution for the given level of availability.

is simply the fraction of hosts available out of the cb

hosts that hold blocks of the file. Figure 5 shows how
the normal distribution with these parameters fits the
binomial distribution for cb = 20. The binomial distri-
bution, which is a discrete distribution, is shown with
the steps. It is well-approximated by the continuous
normal distribution.

Using this approximation, we can rewrite Equa-
tion 6 as

A = P (Y � b) = P (W � 1=c): (7)

Table 4 shows the values of x for which P (W � x)
evaluates to the required minimum availability. These
values are fixed for the normal distribution. Equating
these values for x with 1=c gives us the stretch factor
required for achieving the corresponding level of file
availability.

1=c = �W � k�W (8)

Given the values of b and �H , we can then calculate
the stretch factor c.

Appendix A shows the derivation of c from the
equation 8. We can choose k in Equation 8 depend-
ing on the required file availability from Table 4, and
calculate the stretch factor required for the file to have
that availability. For example, if we want the file to
have three nines of availability, k should be 3.30. If
�H = 0.5 and b = 100, c evaluates to 2.49.

The value of cb needs to be large enough for our re-
sult to hold given our use of the normal approximation
to the binomial distribution. In practice, it has been
found that the normal approximation to the binomial
distribution works quite well for cb � 16 [6]. It is re-
alistic to expect that blocking file systems such as CFS
would break up a large file into more than 16 pieces to
facilitate load balancing. So this analysis would hold
for all such cases.

Required
Availability

Replication factor
(Conv. replication)

Stretch factor (EC)

0.800 3 2.13
0.900 4 2.19
0.950 5 2.25
0.990 7 2.36
0.995 8 2.40
0.999 10 2.49

Table 5: The stretch factor required for the correspond-
ing file availability, �H = 0:5, b = 100.

b=100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Mean host availability
0.9

0.99
0.999

0.9999
0.99999

 File availability

0
2
4
6
8

10
12
14
16

Stretch factor

Figure 6: The graph shows the stretch factor required
for varying levels of file availability, and for varying
mean host availabilities, given that b is 100.

Table 5 shows the value of stretch factor for vari-
ous file availabilities, given a mean host availability of
0.5 and b = 100. It shows that the difference in re-
quired stretch factor between two consecutive nines of
availability is not much for reasonably high host avail-
abilities (� 0.5). For example, the stretch factor goes
from 2.19 to 2.36 for a file availability increase from
0.9 to 0.99. In contrast, when using conventional repli-
cation the replication factor increases from 4 to 7. This
shows that using erasure codes makes the system more
scalable than conventional replication as the required
availability gets higher and higher.

The graph in Figure 6 shows how the required
stretch factor varies with different values of means of
host availability �H and different values of required
file availability.

Validation. To validate our analysis of erasure cod-
ing with randomized placement, we simulated the file
availabilities resulting from our placement algorithm
and compared them to the required file availability.
Figure 7 shows the density of the deviations of the
simulated availabilities from the required availabilities.
As the figure shows, a few files have a lower avail-

8

1

10

100

1000

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

N
um

be
r

of
 fi

le
s

Required availability - Actual availability

file av 0.99

Figure 7: The density of deviations from the required
availability for files for erasure coded replication. The
data is gathered from a simulation of 1000 files with
the required availability per file = 0.99.

ability than the required availability, though most of
them show equal or better availability than the required
value. One reason for the lower availability is the fact
that all our analyses were based on the assumption that
only one block per file is placed on a host. However,
when randomly placing blocks on hosts, some hosts
might have more than one block of a file placed on
them. This is a manifestation of the well-known birth-
day paradox [6]. In Section 7, we discuss how to com-
pensate for this behavior in practice so that all the sys-
tem will provide the required availability for all files.

5.2 System-level availability

System-level availability SA when using erasure cod-
ing is similar to the analysis for the conventional repli-
cation case (Section 4.2): if all files in the system have
stretch factors providing a minimum availability A,
then SA is equal to A.

Validation. To validate our analyses, we simulated
system-level availability using two different distribu-
tions of host availability, constant and uniform ran-
dom. Figure 8 shows the results of these simulations.
As in the conventional replication case, the variations
in the distribution of host availabilities do not affect
the predicted system-level availability, thereby main-
taining the expected value of SA through all our sim-
ulations.

5.3 Storage requirements

In terms of per-host storage, the analysis is again very
similar to that in the conventional replication case and

0.5

0.6

0.7

0.8

0.9

1

1.1

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

S
ys

te
m

-le
ve

l a
va

ila
bi

lit
y

(S
A

)

Stretch factor

Analytical
Simulated(Constant avail. distn)

Simulated(Unif. rand. host avail. distn)

Figure 8: This graph shows how close the simulations
of SA are to the required availability for conventional
replication (shown by the bold line).

we will not repeat it here. For erasure coding, the to-
tal number of randomly placed blocks in the system is
cfb. Hence the mean number of blocks per host �Z is
cfb=n. Using Table 3 again, we can say that with c =
2.49, f=1000, b=1000 and n=1000, with 0.9 probabil-
ity, hosts will store less than or equal to 276 blocks.

Validation. Figure 9 compares the results of sim-
ulating random block placement with our analytic
model in terms of the storage used per host. It shows
the cumulative distribution of storage used per host for
1000 files, with stretch factor 2.36, yielding a 0.99 file
availability. As with the conventional replication case,
we fit a normal distribution to this curve and use a con-
stant block size of 7 MB for this fit. From this dis-
tribution, we get that an individual host will store less
than 1747 MB with probability 0.9. Contrast this with
the storage per host figure we got for the conventional
replication case, which was 7700 MB. This shows that
for the same level of availability, for our test case, the
conventional replication strategy takes up roughly 4.5
times the storage required for the erasure coded case.

6 Long-term availability

As we have described in earlier sections, the differenti-
ation of long-term and short-term availability is impor-
tant. There is a constant inflow and outflow of users in
a peer-to-peer system, that is not captured by a short-
term availability model. Here, we introduce the con-
cept of rate of decay of the system, which is the rate at
which users “die” in the system, i.e. they leave never
to come back. We have considered various different
kinds of decay patterns. Due to the lack of relevant

9

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000

F
ra

ct
io

n
of

 h
os

ts

Storage (MB)

Simulation A = 0.99
Normal approx A=0.99

Figure 9: Cumulative distribution function of the stor-
age per host for erasure coded replication.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

F
ile

 a
va

ila
bi

lit
y

F
ra

ct
io

n
of

 h
os

ts
 u

p

Months

SA
available host frac.

Figure 10: The decay in a peer-to-peer system affects the
system availability drastically.

data on the rate of decay in a peer-to-peer system, we
decided to use a pessimistic decay distribution, namely
the exponential distribution. However, to mitigate the
pessimistic approach to number of hosts decaying, we
offset the exponential distribution by 3 months, which
essentially means that in our simulation, no users dis-
appear in less than 3 months.

In the best case, we can say that hosts in the sys-
tem die when computers become too old to use. Let us
make the reasonable assumption that the average life-
time of a PC is 3 years, or 36 months. Assuming that
users in a peer-to-peer system decay follow an expo-
nential distribution with rate 1/36, we performed sim-
ulations of system-level availability SA for the system
using erasure coded replication for stretch factor 2.36
and file availability 0.99. We measure how it deteri-
orates over time. Figure 10 shows that the system-
level availability SA drops drastically after the first 10
months, and is almost zero after 20 months. This indi-
cates that periodic refreshes are needed in the system

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

S
ys

te
m

-le
ve

l a
va

ila
bi

lit
y

(S
A

)

F
ra

ct
io

n
of

 h
os

ts
 u

p

Months

EC SA
Fraction of avail. hosts

Conv SA

Figure 11: Decay in a peer-to-peer system affects both
replication strategies, but in different ways, as shown
in this graph.

to keep files in the system available over long periods
of time. For example, if we refresh all files after every
ten months, we will still get a very high level of sys-
tem availability. Also, the time between refreshes can
be lengthened while not compromising on availability
if a larger stretch factor is used.

We also simulated both replication strategies with
the same stretch factor/replication factor of 7, to see
how their reaction to long-term decay compared. The
results are shown in Figure 11. The erasure coded
replication maintains a high SA until 40 months have
passed before dropping off steeply, while the in the
conventional replication case, the drop in SA is grad-
ual, and after month 50, it is actually better than the
erasure coded replication.

This can be explained in the following way. Re-
call that in the erasure coded case, the fraction of hosts
available (W) out of cb hosts that hold blocks of the file
follows a normal distribution with mean �H and vari-
ance �H(1 � �H)=cb. The larger the value of cb, the
lower the variance. In the case of conventional repli-
cation, the fraction of hosts available follows a much
shallower distribution, since there are not that many
hosts that contain replicas of the file. Figure 12 shows
the two distributions.

In the erasure coded case, to recover the file b or
more hosts must be available. As hosts die, b corre-
sponds to an increasingly larger fraction of all hosts.
Given the sharply concentrated probability distribution
for erasure coding, even a small decrease in the num-
ber of hosts has a dramatic effect on file availability.
By contrast, the less concentrated distribution of the
conventional replication case is much less sensitive to
decreases in the total number of hosts.

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

Fraction of available hosts

EC
Conv. rep.

Figure 12: A probability distribution function of the
fraction of hosts available. The steepness of the curve
for erasure coded replication causes the drastic de-
crease in availability, while for conventional replica-
tion, the decay is gradual

If we require the system to be resilient to such de-
cay, we need to periodically refresh it. Going back
to Figure 11, for these particular simulation parame-
ters, refreshing every 40 months approximately main-
tains roughly system-level availability of 0.9 for the
erasure coded case. However, in the conventional case,
though the overall drop in availability is more gradual,
we would need to refresh every 20 months or so to
maintain a system-level availability of 0.9.

7 Practical issues

The analyses and simulations up to this point have as-
sumed an idealized system that ignores some practical
issues that an actual implementation would need to ad-
dress. In this section, we describe these implementa-
tion issues and how we compensate for idealized as-
sumptions we made in the system model.

Variable file sizes: In our model for the use of era-
sure coded blocks, we have assumed that all files have
the same number of blocks, b, and that at most one
block of a file is stored on a host. This assumption
holds if the system supports variable block sizes such
that we can partition all files into the same number of
blocks. However, it is often much more convenient to
implement storage systems with a fixed block size.

We can accommodate the constraint of fixed-sized
blocks by placing multiple blocks per host. Since
the availability of a file depends only on the number
of hosts on which its blocks are placed, and not on
the size of the blocks themselves, it does not matter

whether we place one large block per host or multiple
smaller fixed-size blocks per host as long as the distri-
bution of data across the hosts is even.

More formally, the availability of a file Fi that has
b pre-encoded blocks and cb encoded blocks, with one
block placed per host, is equal to the availability of a
file Fj that has bl pre-encoded blocks and cbl encoded
blocks, with l blocks placed per host; c is the same
stretch factor for both files. The number of hosts stor-
ing blocks of Fi is cb, and, for Fj , this number is cbl=l,
or also cb. Note that the number of hosts responsible
for the file is the same in both cases. Now, for Fi to be
available at any given time, we need b blocks, and since
there is only one block per host, the number of hosts
that need to be up is b or more out of the cb hosts. For
Fj to be available, we need bl blocks. Since each host
stores l blocks, we need b or more hosts to be avail-
able. In both cases, the minimum fraction of hosts that
need to be available is b=cb = 1=c (see Equation 8 in
Section 5.1) and they have the same availability.

For example, assume that Fi is a 700 MB file and
Fj is a 7 GB file. If Fi is divided into a 100 blocks,
each of size 7 MB, and put one block per host, and F j

is divided into 1000 blocks each of 7 MB as well, and
we put those 10 blocks per host, both files will have
the same availability.

Restricting replication: When using erasure cod-
ing, the system partitions files into blocks. If the sys-
tem uses fixed-size blocks, then large files will result
in the distribution of blocks to many hosts. Distribut-
ing blocks widely has a number of benefits, such as
increasing file availability and providing additional op-
portunity for parallel downloads. However, the system
may want to restrict the number of hosts on which it
distributes blocks for a given file so that, e.g., it can
limit the number of hosts that need to be contacted to
download the file.

Restricting the maximum number of hosts on which
to distribute blocks is entirely a system design deci-
sion, and the model easily accommodates the restric-
tion. Analyses using the model assume that erasure-
coded blocks are distributed to at least 16 hosts (see
Section 5.1).

Time dependence: Our model for short-term file
availability assumes that the host availability distribu-
tion is stationary. In practice, though, the host avail-
ability distribution varies throughout the day. Fig-
ure 13 shows the number of Gnutella sessions and
hosts over a period of three days based upon measure-
ments we made of host and application availability of

11

100

1000

10000

Thu Fri Sat Sun

A
va

ila
bl

e
nu

m
be

r

Days

No. of gnutella sessions up
No. of hosts up

Figure 13: The two graphs show how many of the
probed hosts were running gnutella, and how many
were available, but not necessarily running gnutella
over time. Both show a strong daily periodicity.

0

0.2

0.4

0.6

0.8

1

Thu 13:00 19:00 Fri 1:00 7:00 13:00

F
ile

 a
va

ila
bi

lit
y

Time of day (hours)

c=2
c=3
c=4

Figure 14: Increasing the stretch factor c to compensate
for time-of-day effects in the host availability distribu-
tion.

the Gnutella system using techniques similar to those
described in [18] in March, 2002. To account for these
time-of-day effects, the system can compensate by us-
ing a conservative stretch factor c. Rather than choos-
ing c to attain a desired degree of file availability ac-
cording to the mean host availability across the entire
day, we can choose c according to the host availability
distribution of just those hosts available at night (when
the fewest number of hosts are available). Although
the larger stretch factor will result in a higher file avail-
ability than needed during the day, it will ensure that
the system can always attain the minimum file avail-
ability required across the entire day.

Figure 14 shows the effect of adjusting the stretch
factor to compensate for time-of-day effects. The fig-
ure shows the results of simulating file availability for

three different stretch factors using the first day of a
trace of Gnutella host availability.

Using a stretch factor of 3, for example, results in
a file availability close to 1 for much of the day, but a
larger stretch factor is needed to have the desired file
availability for the entire day.

Block propagation: The fact that the number of
hosts available changes throughout the day also im-
pacts block placement. An implicit assumption in the
model is that all hosts are available when the system
randomly assigns blocks to hosts. However, the fun-
damental nature of the problem is that hosts are only
available during a part of the day. As a result, at the
time a file is introduced the system is likely to ran-
domly choose to place a subset of its encoded blocks
on hosts that are not available at that instant. In prac-
tice, the system can address this problem in two ways.

First, it can rely upon the conservative stretch fac-
tor used to compensate for time-of-day effects above,
and propagate blocks onto hosts as they become avail-
able. When randomly choosing hosts on which to
place blocks, the system will choose among all hosts
in the system. For those hosts that are available, their
blocks will be stored immediately. For those hosts
that are unavailable, the system will simply wait and
propagate the blocks for those hosts when they become
available. Until they become available, the system can
store those blocks on currently available hosts.

Of course, the file will not achieve maximum avail-
ability until all of its blocks propagate to their hosts.
However, to compensate for time-of-day effects, the
system will have chosen a stretch factor c to achieve
the desired file availability assuming the worst host
availability distribution for the day. Consequently, the
system will provide at least the desired file availability
just with those hosts that are instantaneously available
at the time the file is introduced into the system.

Alternatively, when the system tries to place a
block on a host for block placement, it can determine
whether the host is unavailable. If a host is unavail-
able, the system can randomly choose another host on
which to place the block. This approach assumes that
host availability is identically and independently dis-
tributed, in which case host selection should still ap-
pear to be a random subset from the original host avail-
ability distribution.

Finite storage: Although we use erasure coding
as an efficient mechanism to achieve redundancy and
random placement to evenly distribute storage across
hosts in the system, host storage capacity is finite. As

12

a result, when the system randomly chooses hosts on
which to place blocks, it is possible that some hosts
chosen do not have the capacity to store those blocks.
The system can deal with this problem in similar ways
as with the block propagation issue.

First, as with the block placement issue, when the
system chooses a host for block placement the host can
explicitly inform the system that it is unable to store the
assigned block. The system can then randomly choose
another host. Assuming that the amount of storage per
host is not correlated with its availability, host selec-
tion again should still appear to be a random subset
from the original host availability distribution.

Second, the system can further overestimate the
stretch factor by a small amount to compensate. In
this case, hosts that have reached their storage capacity
can silently drop blocks assigned to them. The larger
stretch factor will distribute more blocks than neces-
sary, compensating for the fact that some of them will
be dropped. The increase in stretch factor will depend
on how frequently hosts reach their storage capacity.

8 Conclusions

In this paper, we have analyzed techniques for provid-
ing availability in peer-to-peer systems. We have de-
veloped a probabilistic model for reasoning about the
storage overhead required to deliver a specified level
of availability. Our model can accommodate any sta-
tionary distribution for host availability and is there-
fore appropriate for accommodating the heterogeneity
in conventional peer-to-peer systems. We show that
under such challenging host availability distributions,
erasure coding is highly efficient since it requires con-
siderably less storage than conventional replication to
provide a given level of file availability. However, we
also demonstrate that erasure coding experiences a dra-
matic phase transition as hosts are removed from the
system and therefore can degrade very quickly if ad-
ditional redundancy is not added to the system as per-
sistent failures occur. Finally, we address some of the
practical tradeoffs in implementing replication strate-
gies in a peer-to-peer system and show how to accom-
modate deviations from the pure form of our model
without unduly compromising availability. In conclu-
sion, we have shown that high levels of availability are
attainable, even in peer-to-peer systems with pervasive
failure, in exchange for a modest overhead in redun-
dant storage.

References

[1] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer.
Feasibility of a serverless distributed file system de-
ployed on an existing set of desktop PCs. In Mea-
surement and Modeling of Computer Systems, pages
34–43, 2000.

[2] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege.
A digital fountain approach to reliable distribution of
bulk data. In Proceedings of ACM SIGCOMM, pages
56–67, 1998.

[3] Y. Chen. A prototype implementation of archival in-
termemory. In Proceedings of the Fourth ACM Inter-
national Conference on Digital Libraries, 1999.

[4] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with cfs. In
proceedings of the 18th ACM Symposium on Operat-
ing System Principles (SOSP) , 2001.

[5] R. Dingledine, M. J. Freedman, and D. Molnar. The
free haven project: Distributed anonymous storage ser-
vice. In Workshop on Design Issues in Anonymity and
Unobservability, pages 67–95, 2000.

[6] R. Durrett. Probability: Theory and Examples.
Brooks/Cole Publishing Company, 1991.

[7] edonkey homepage, http://edonkey2000.com.

[8] Gnutella homepage, http://www.gnutella.com.

[9] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Su-
ciu. What can databases do for peer-to-peer? In Pro-
ceedings of the Fourth International Workshop on the
Web and Databases (WebDB ’2001), June 2001.

[10] Kazaa homepage, http://www.kazaa.com.

[11] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An architecture
for global-scale persistent storage. In Proceedings of
ACM ASPLOS, 2000.

[12] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and replication in unstructured peer-to-peer networks.
In To appear in Proceedings of 16th ACM Interna-
tional Conference on Supercomputing, 2002.

[13] A. D. R. Marc Waldman and L. F. Cranor. Publius: A
robust, tamper-evident, censorship-resistant, web pub-
lishing system. In Proc. 9th USENIX Security Sympo-
sium, pages 59–72, August 2000.

[14] Napster homepage, http://www.napster.com.

[15] V. Pless. Introduction to the theory of error-correcting
codes. John Wiley and Sons, 3rd edition, 1998.

13

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network.
In Proceedings of ACM SIGCOMM, 2001.

[17] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for large-
scale peer-to-peer systems. In Middleware, pages 329–
350, 2001.

[18] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A mea-
surement study of peer-to-peer file sharing systems. In
MMCN, 2002.

[19] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceed-
ings of ACM SIGCOMM, 2001.

[20] Swarmcast homepage,
http://sourceforge.net/projects/swarmcast.

[21] H. Weatherspoon and J. Kubiatowicz. Erasure coding
v/s replication: a quantitative approach. In Proceed-
ings of the First International Workshop on Peer-to-
peer Systems, 2002.

[22] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
Tapestry: An infrastructure for fault-tolerant wide-area
location and routing. Technical Report UCB-CSD-01-
1141, U. C. Berkeley, April 2000.

A Appendix

We show the derivation of the value of the stretch fac-
tor for the erasure coded case in this appendix. We
restate Equation 8 here, and go on to show the deriva-
tion.

1=c = �W � k�W

We know that �W = �H and �2W = �H(1��H)=cb.
Putting this into the equation 8, we get

1=c = �H � k

s
�H(1� �H)

cb

This gives us a quadratic in terms of
p
c, solving

which and eliminating impossible roots, we get

c =

0
@k

q
�H(1��H)

b +
q

i2�H(1��H)
b + 4�H

2�H

1
A

2

14

