
Replication Strategies for Highly Available Peer-to-Peer
Storage

Ranjita Bhagwan, David Moore, Stefan Savage, and Geoffrey M. Voelker

Department of Computer Science and Engineering
University of California, San Diego

1 Introduction

In the past few years, peer-to-peer networks have become an extremely popular mech-
anism for large-scale content sharing. Unlike traditional client-server applications,
which centralize the management of data in a few highly reliable servers, peer-to-peer
systems distribute the burden of data storage, computation, communications and ad-
ministration among thousands of individual client workstations. While the popular-
ity of this approach, exemplified by systems such as Gnutella [3], was driven by the
popularity of unrestricted music distribution, newer work has expanded the potential
application base to generalized distributed file systems [1, 4], persistent anonymous
publishing [5], as well as support for high-quality video distribution [2]. The wide-
spread attraction of the peer-to-peer model arises primarily from its potential for both
low-cost scalability and enhanced availability. Ideally a peer-to-peer system could ef-
ficiently multiplex the resources and connectivity of its workstations across all of its
users while at the same time protecting its users from transient or persistent failures in
a subset of its components.

However, these goals are not trivially engineered. First-generation peer-to-peer
systems, such as Gnutella, scaled poorly due to the overhead in locating content within
the network. Consequently, developing efficient lookup algorithms has consumed most
of the recent academic work in this area [9, 11]. The challenges in providing high
availability to such systems is more poorly understood and only now being studied.
In particular, unlike traditional distributed systems, the individual components of a
peer-to-peer system experience an order of magnitude worse availability – individually
administered workstations may be turned on and off, join and leave the system, have in-
termittent connectivity, and are constructed from low-cost low-reliability components.
One recent study of a popular peer-to-peer file sharing system found that the majority
of peers had application-level availability rates of under 20 percent [8].

As a result, all peer-to-peer systems must employ some form of replication to pro-
vide acceptable service to their users. In systems such as Gnutella, this replication
occurs implicitly as each file downloaded by a user is implicitly replicated at the user’s
workstation. However, since these systems do not explicitly manage replication or
mask failures, the availability of an object is fundamentally linked to its popularity and

1



users have to repeatedly access different replicas until they find one on an available
host. Next-generation peer-to-peer storage systems, such as the Cooperative File Sys-
tem (CFS) [1], recognize the need to mask failures from the user and implement a basic
replication strategy that is independent of the user workload.

While most peer-to-peer systems employ some form of data redundancy to cope
with failure, these solutions are not well-matched to the underlying host failure distri-
bution or the level of availability desired by users. Consequently, it remains unclear
what availability guarantees can be made using existing systems, or conversely how to
best achieve a desired level of availability using the mechanisms available.

In our work we are exploring replication strategy design trade-offs along several
interdependent axes: Replication granularity, replica placement, and application char-
acteristics, each of which we address in subsequent sections. The closest analog to our
work is that of Weatherspoon and Kubiatowicz [10] who compare the availability pro-
vided by erasure coding and whole file replication under particular failure assumptions.
The most critical differences between this work and our own revolve around the failure
model. In particular, Weatherspoon and Kubiatowicz focus on disk failure as the domi-
nant factor in data availability and consequently miss the distinction between short and
long time scales that is critical to deployed peer-to-peer systems. Consequently, their
model is likely to overestimate true file availability in this environment.

2 Replica granularity

Systems like Gnutella employ whole file replication: files are replicated among many
hosts in the system based upon which nodes download those files. Whole file repli-
cation is simple to implement and has a low state cost – it must only maintain state
proportional to the number of replicas. However, the cost of replicating entire files in
one operation can be cumbersome in both space and time, particularly for systems that
support applications with large objects (e.g., audio, video, software distribution).

Block-level replication divides each file object into an ordered sequence of fixed-
size blocks. This allows large files to be spread across many peers even if the whole
file is larger than what any single peer is able to store. However, downloading an object
requires that enough hosts storing block replicas are available to reconstruct the entire
object at the time the object is requested. If any one replicated block is unavailable, the
object is unavailable. For example, measurements of the CFS system using six block-
level replicas show that when 50 percent of hosts fail the probability of a block being
unavailable is less than two percent [1]. However, if an object consists of 8 blocks
then the expected availability for the entire object will be less than 15 percent. This
dependency is one of the motivating factors for the use of erasure codes with blocking
replication.

Erasure codes (EC), such as Reed-Solomon [7], provide the property that a set of
� original blocks can be reconstructed from any � coded blocks taken from a set of
�� coded blocks (where � is typically close to �, and � is typically a small constant).
The addition of EC to block-level replication provides two advantages. First, it can
dramatically improve overall availability since the increased intra-object redundancy
can tolerate the loss of many individual blocks without compromising the availability

2



Conventional
EC

1
10

100
1000

10000
Blocks per file

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

Host 
failure 

probability

0

0.2

0.4

0.6

0.8

1

Reliability

Figure 1: Reliability as a function of
the number of blocks per file and host
failure probability.

100

1000

10000

Thu Fri Sat

A
va

ila
bl

e 
nu

m
be

r

Days

No. of hosts running gnutella
No. of hosts up

Figure 2: Diurnal patterns in the number
of probed hosts available on the network, as
well as in the number of these hosts running
Gnutella.

of the whole file. Second, the ability to reconstruct an object from many distinct
subsets of EC blocks, permits a low-overhead randomized lookup implementation that
is competitive in state with whole-file replication. Rather than maintain the location of
every replica for each block, a system using EC blocks can simply track the location of
each peer holding any block belonging to the object.

2.1 Replication and Host Failure

As an initial experiment to explore the trade-off between conventional block replication
and block replication with erasure codes, we simulate the replication and distribution of
a single file in a idealized system of � hosts. The file is divided into fixed-size blocks
and replicated. Replicated blocks are randomly assigned to hosts, each of which has the
same uniform failure probability. We then simulate random host failure and determine
whether the file is still recoverable from the system assuming an ideal lookup system
and perfect network conditions. A file is recoverable if, after the failures, enough of
its blocks survive to reconstruct its original contents. We repeat this experiment 100
times and measure the fraction of times that the file is completely recoverable. For the
purposes of this experiment, we define this fraction as the reliability of the system.

We use the term storage redundancy to refer to the amount of storage a replication
technique uses. In the conventional case, storage redundancy is simply the number
of replicas of the file. For the erasure coded case, redundancy is introduced not only
by replication, but also by the encoding process. In this case, storage redundancy is
the number of replicas times the encoding redundancy. A file consisting of � blocks
is encoded into �� blocks, where � � � is what we call the encoding redundancy (or
stretch factor). In our simulations, � � �. Comparing strategies when using storage
redundancy is more fair than comparing them using number of replicas. Figure 1 shows
simulation results of the idealized system as a function of blocks per file � and host
failure probability, for a storage redundancy of 20.

From the figure, we see that for host failure probabilities less than 0.5 both repli-
cation schemes achieve high reliability. For higher host failure probabilities, the relia-

3



bilities of the two techniques diverge. Because we abstract away block size, the case
where only one block is used for a file corresponds to the use of whole-file replication.
Note that the “conventional” curve for this case has the best reliability compared with
using more blocks per file. Also, as number of blocks per file increases, the two tech-
niques quickly diverge in reliability. Erasure coded blocks actually increases reliability
since the system has more flexibility in choosing among hosts to reconstruct the file.
However, conventional block replication decreases in reliability, and is very sensitive
to high host failure probability.

The implication of these results is that using conventional blocking and scattering
those blocks across a large number of relatively unreliable hosts makes the system less
reliable. However, by decoupling exactly which blocks are required to reconstruct a
file from the hosts storing replicas of those blocks, erasure coded replication is able to
achieve excellent reliability even when the underlying hosts are quite unreliable. And
the reliability of using erasure coding increases, rather than decreases, for larger files.

3 Replica placement

For the purposes of file availability, peer-to-peer systems should not ignore the avail-
ability characteristics of the underlying workstations and networks on which they are
implemented. In particular, systems should recognize that there is wide variability in
the availability of hosts in the system. Saroiu and Gribble found that fewer than 20
percent of Gnutella’s peer systems had network-level availability in excess of 95 per-
cent [8], while over half of the remainder had availability under 20 percent. Given such
a wide variability, the system should not place replicas blindly: more replicas are re-
quired when placing on hosts with low availability, and fewer on highly available hosts.
Moreover, under many predictable circumstances, peer failures may be correlated. We
performed a study of the Gnutella network similar to Saroiu and Gribble’s work, and
found that the number of hosts running Gnutella is well correlated with time of day,
and shows a diurnal pattern, as shown in Figure 2. Also, independent investigations
of client workstation availability has shown strong time-zone specific diurnal patterns
associated with work patterns [6]. As a consequence, placing replicas in out-of-phase
time zones may be a sound replication strategy.

4 Application characteristics

The relationship between when data are requested and the time at which they must
be delivered creates several opportunities for optimization based on application char-
acteristics. For example, traditional Unix-like file system applications usually require
an entire file object to be delivered to the application buffer cache before the applica-
tion can make forward progress. However, the order in which this data is delivered
and variations in overall delay rarely have a significant impact. In contrast, streaming
media workloads typically only require that the data surrounding the current playout
point be available, but this particular data must be delivered in a timely fashion for the
application to operate correctly.

4



5 Summary

We are investigating strategies for using replication to design and implement highly
available storage systems on highly unavailable peer-to-peer hosts. In particular, we
are exploring the availability provided by whole object and blocking replication, and
of erasure coding in such systems. In addition, we are investigating how application
properties such as object size, timeliness of delivery, and workload properties such
as object popularity should influence replication strategies. We are also investigating
how replica placement policies can be tuned to compensate for diurnal patterns in host
availability, and to take advantage of out-of-phase time zones. Eventually, we plan to
implement our results in a prototype system for practical evaluation.

References

[1] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area coopera-
tive storage with cfs. In proceedings of the 18th ACM Symposium on Operating
System Principles (SOSP) , 2001.

[2] edonkey homepage, http://edonkey2000.com.

[3] Gnutella homepage, http://www.gnutella.com.

[4] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architec-
ture for global-scale persistent storage. In Proceedings of ACM ASPLOS, 2000.

[5] A. D. R. Marc Waldman and L. F. Cranor. Publius: A robust, tamper-evident,
censorship-resistant, web publishing system. In Proc. 9th USENIX Security Sym-
posium, pages 59–72, August 2000.

[6] D. Moore. Caida analysis of code-red, http://www.caida.org/analysis/
security/code-red/, 2001.

[7] V. Pless. Introduction to the theory of error-correcting codes. John Wiley and
Sons, 3rd edition, 1998.

[8] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-
peer file sharing systems. In MMCN, 2002.

[9] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In Proceedings of
ACM SIGCOMM, 2001.

[10] H. Weatherspoon and J. Kubiatowicz. Erasure coding v/s replication: a quantita-
tive approach. In Proceedings of the First International Workshop on Peer-to-peer
Systems, 2002.

[11] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. Technical Report UCB-CSD-01-
1141, U. C. Berkeley, April 2000.

5


